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Deep Learnng for 3D data

A hard problem

- Data volume considerable.

- Lack of grid-structure.

- Permutation-invariance.

- Sparsity, variable density.

What works:

- set based methods for shape
embedding (PointNet)

- graph convolution for relationships
analysis

However: do not scale well at all.
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SuperPoint-Graph

Observation:
npoints � nobjects.

Partition scene
into superpoints
with simple
shapes.

Only a few
superpoints,
context leveraging
with powerful
graph methods.
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Pipeline

Semantic segmentation down to 3 sub-problems:

- Geometric Partition : into simple shapes.

Complexity: very high (clouds of 108 points)

Algorithm: `0-cut pursuit

- Superpoint embedding: learning shape descriptors

Complexity: low (subsampling to 128 points × ∼ 1000 points)

Algorithm: PointNet

- Contextual Segmentation: using the global structure

Complexity: very low (superpoint graph ∼ 1000 sp)

Algorithm: ECC with Gated Recurrent Unit (GRU)
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Pipeline
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Qualitative Results: Semantic3D

Semantic3D: 3 billions points over 30 clouds

route
herbe
arbre
buisson
bâtiment
aménagement
artefact
voiture
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Quantitative Results: Semantic3D

prediction ground truth

Methode OA mIoU road grass tree bush
build-

ing
hard-
scape

arti-
fact

cars

reduced test set: 78 699 329 points
TMLC-MSR 86.2 54.2 89.8 74.5 53.7 26.8 88.8 18.9 36.4 44.7
DeePr3SS 88.9 58.5 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2
SnapNet 88.6 59.1 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4
SegCloud 88.1 61.3 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3

SPG (Ours) 94.0 73.2 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2
full test set: 2 091 952 018 points

TMLC-MS 85.0 49.4 91.1 69.5 32.8 21.6 87.6 25.9 11.3 55.3
SnapNet 91.0 67.4 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2

SPG (Ours) 92.9 76.2 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4
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Qualitative Results: S3DIS

Indoor, 3 buildings, 6 stories, 200+ rooms, 600 000 000+ points

ceiling
ground
wall
column
beam
window
door
table
chair
bookcase
board
other
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Résultats qualitatif: S3DIS
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Quantitative Results: S3DIS

Method OA mAcc mIoU door board
A5 PointNet – 48.5 41.1 10.7 26.3

A5 SEGCloud – 57.3 48.9 23.1 13.0
A5 SPG 86.4 66.5 58.0 61.5 2.1

PointNet 78.5 66.2 47.6 51.6 29.4
Engelmann 81.1 66.4 49.7 51.2 30.0

SPG 85.5 73.0 62.1 68.4 8.7

Śtep Time
Voxelisation 24

Features 88
Partition 447

SPG computation 436
Inference ×10 60

Total 1055

Deep Learning for 3D Point Clouds 8 / 11



Quantitative Results: S3DIS

Method OA mAcc mIoU door board
A5 PointNet – 48.5 41.1 10.7 26.3

A5 SEGCloud – 57.3 48.9 23.1 13.0
A5 SPG 86.4 66.5 58.0 61.5 2.1

PointNet 78.5 66.2 47.6 51.6 29.4
Engelmann 81.1 66.4 49.7 51.2 30.0

SPG 85.5 73.0 62.1 68.4 8.7
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Superpoint Partition

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

e ∈ RC×m : handcrafted descriptors of the local geometry/radiometry

Superpoints: connected components of a piecewise constant
approximation of e structured by an adjacency graph.

Problem: any errors made in the partition will carry in the prediction...

Deep Learning for 3D Point Clouds 9 / 11



Superpoint Partition

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

e ∈ RC×m : handcrafted descriptors of the local geometry/radiometry

Superpoints: connected components of a piecewise constant
approximation of e structured by an adjacency graph.

Problem: any errors made in the partition will carry in the prediction...

Deep Learning for 3D Point Clouds 9 / 11



Superpoint Partition

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

e ∈ RC×m : handcrafted descriptors of the local geometry/radiometry

Superpoints: connected components of a piecewise constant
approximation of e structured by an adjacency graph.

Problem: any errors made in the partition will carry in the prediction...

Deep Learning for 3D Point Clouds 9 / 11



Presentation Layout

1 Learning 3D Point Clouds Segmentation

2 Conclusion
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The Pipeline

Input Point Cloud Learned Embedding

Oversegmentation True Objects
General idea:

1) Train a neural network to produce points embeddings with high contrast
at the border of objects...

2) ... Which serve as inputs of a nondifferentiable segmentation algorithm.
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Adjacency Graph

G = (C ,E) a meaningful
adjacency graph

Construction is problem-dependant

Einter : set of inter-object edges

Eintra : set of intra-object edges

We want embeddings with high
contrast at Einter and similar value
at Eintra

If we get Einter right, then we have
automatically object purity!

almost!
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Generalized Minimal Partition Problem

ei embeddings of the local geometry/radiometry

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

Superpoints: regions with homogeneous embeddings

Works well with handcrafted embeddings, should work with learned ones!

Problem: a non-convex, nondifferentiable, noncontinuous problem

Good approximations can be computed with `0-cut pursuit [Landrieu &
Obozinski SIIMS 2018]
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The Problem With the GMPP

f ? = arg min
f∈RC×m

∑
i∈C

‖fi − ei‖2 +
∑

(i,j)∈E

wi,j [fi 6= fj ] ,

Naive approach : loss as the quality of f ? as a segmentation

To backpropagate we need: ∂CCC
∂f ?

and ∂f ?

∂e

Problem:Those functions are not backpropagable.
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Graph-Structured Contrastive Loss

We propose a surrogate loss to learn meaningful embeddings

`(e) =
1

|E |

 ∑
(i,j)∈Eintra

φ (ei − ej) +
∑

(i,j)∈Einter

µi,jψ (ei − ej)

 ,

φ minimum at 0, ψ maximum at 0

φ(x) = δ(
√
‖x‖2/δ2 + 1− 1)

ψ(x) = max (1− ‖x‖, 0)

Promotes homogeneity within objects and contrast at their borders

µi,j : weight of inter-edges
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Cross-Partition Weighting Strategy, cont’d

µU,V = µ
min (| U |, | V |)
| (U,V ) | for (U,V ) ∈ E µi,j = µU,V for all (i , j) ∈ (U,V )

Role of µi,j critical: assess impact
of missed edge.

Operate on G = (V, E) adjacency
graph of cross-partition between
superpoints and real objects.

superpoint

majority object

trespassing

interface

µLW,LD =

µRW,RD =
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Results

We require 5 times less superpoints for similar performance!
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Illustration

Input cloud Ground truth objects LPE embeddings

Graph-LPE (ours) VCCS, Papon et al. 2013 Lin et al. 2018
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Results

Method OA mAcc mIoU
6-fold cross validation

PointNet 2017 78.5 66.2 47.6
Engelmann et al. in 2017 81.1 66.4 49.7

PointNet++ 2017 81.0 67.1 54.5
Engelmann et al. in 2018 84.0 67.8 58.3

SPG 2018 85.5 73.0 62.1
PointCNN 2018 88.1 75.6 65.4

Graph-LPE + SPG (ours) 87.8 77.5 67.6
Fold 5

PointNet 2017 - 49.0 41.1
Engelmann et al. in 2018 84.2 61.8 52.2

pointCNN 2018 85.9 63.9 57.3
SPG 2018 86.4 66.5 58.0
PCCN 2018 - 67.0 58.3

Graph-LPE + SPG (ours) 87.8 69.1 61.5

Table: S3DIS

Method OA mAcc mIoU
PointNet 2017 79.7 47.0 34.4
Engelmann 2018 79.7 57.6 35.6
Engelmann 2017 80.6 49.7 36.2
3P-RNN 2018 87.8 54.1 41.6

Graph-LPE + SPG (ours) 85.2 62.4 49.7

Table: vKITTI
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Illustration

Input Cloud Oversegmentation

prediction Ground Truth
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Presentation Layout

1 Learning 3D Point Clouds Segmentation

2 Conclusion
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Conclusion

Our paradigm for graph-structured learning and optimization:

- Exploit the spatial regularity of the solution to increase speed and
precision.

- Use neural networks to learn the inputs and parameters of efficient
optimization algorithms.

- Use graph-structured optimization to compute the structure of neural
network adapted to the data.

All our work is online:

� loicland/superpoint-graph 268 � 78 0

� loicland/cut-pursuit 22 � 7 0

� 1a7r0ch3/parallel-cut-pursuit very soon!
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