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A hard problem

- Data volume considerable.
- Lack of grid-structure.

- Permutation-invariance.

- Sparsity, variable density.
@ What works:

- set based methods for shape
embedding (PointNet)

- graph convolution for relationships
analysis

@ However: do not scale well at all.

credit: Gaidon2016, Engelmann2017, Hackel2017
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I—
SuperPoint-Graph

o Observation:
Npoints =>> Nobjects -

@ Partition scene
into superpoints
with simple
shapes.

o Only a few
superpoints,
context leveraging
with powerful
graph methods.

Landrieu&Simonovski2018
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Pipeline

Semantic segmentation down to 3 sub-problems:

Geometric Partition : into simple shapes.

Complexity: very high (clouds of 10® points)

Algorithm: {p-cut pursuit

Superpoint embedding: learning shape descriptors
Complexity: low (subsampling to 128 points x ~ 1000 points)
Algorithm: PointNet

Contextual Segmentation: using the global structure
Complexity: very low (superpoint graph ~ 1000 sp)
Algorithm: ECC with Gated Recurrent Unit (GRU)

Deep Learning for 3D Point Clouds
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[} point

—_— Voronoi Edge

(a) Point cloud

Deep Learning for 3D Point Clouds

@ superpoint

> superedge

(b) Superpoint graph

table

table
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chair

chair

chair

- embeddings

(c) Convolution Network
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Quantitative Results: Semantic3D

ground trut

Methode OA mloU road grass tree bush build- hard- arti- cars
ing scape fact
reduced test set: 78699 329 points
TMLC-MSR 86.2 54.2 89.8 745 53.7 26.8 88.8 18.9 36.4 447
DeePr3SS 88.9 58.5 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2
SnapNet 88.6 59.1 82.0 77.3 79.7 229 91.1 18.4 37.3 64.4
SegCloud 88.1 61.3 83.9 66.0 86.0 40.5 91.1 30.9 275 64.3
SPG (Ours) 94.0 73.2 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2
full test set: 2091 952 018 poi
TMLC-MS 85.0 49.4 91.1 69.5 32.8 21.6 87.6 25.9 11.3 55.3
SnapNet 91.0 67.4 89.6 79.5 74.8 56.1 90.9 36.5 343 77.2
SPG (Ours) 92.9 76.2 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4
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Indoor, 3 buildings, 6 stories, 200+ rooms, 600 000 000+ points
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Résultats qualitatif: S3DIS
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Quantitative Results: S3DIS
Method OA mAcc  mloU | door board
A5 PointNet - 48.5 41.1 10.7 26.3
A5 SEGCloud - 57.3 48.9 23.1 13.0
A5 SPG 86.4 66.5 58.0 61.5 2.1
PointNet 78.5 66.2 47.6 51.6 29.4
Engelmann 81.1 66.4 49.7 51.2 30.0
SPG 85.5 73.0 62.1 68.4 8.7
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Quantitative Results: S3DIS

Method OA mAcc  mloU | door board
A5 PointNet - 48.5 41.1 10.7 26.3
A5 SEGCloud 57.3 48.9 23.1 13.0

A5 SPG 86.4  66.5 58.0 | 61.5 2.1

PointNet 78.5 66.2 47.6 51.6 29.4
Engelmann 81.1 66.4 49.7 51.2 30.0

SPG 85.5 73.0 62.1 68.4 8.7
Step Time
Voxelisation 24
Features 88
Partition 447
SPG computation 436
Inference x10 60
Total 1055
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Superpoint Partition

f* = arg min ZHf, - e;H2 + Z w;j [fi # £,

C N .
FERTX™ jec (i.j)€E

@ e € R°*™ : handcrafted descriptors of the local geometry/radiometry

@ Superpoints: connected components of a piecewise constant
approximation of e structured by an adjacency graph.

@ Problem: any errors made in the partition will carry in the prediction...
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The Pipeline

Oversegmentation True Objects
General idea:

1) Train a neural network to produce points embeddings with high contrast
at the border of objects...

2) ... Which serve as inputs of a nondifferentiable segmentation algorithm.
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Adjacency Graph

G = (C, E) a meaningful
adjacency graph

Construction is problem-dependant
Einter : set of inter-object edges
Eintra : set of intra-object edges

We want embeddings with high
contrast at Ejnter and similar value
at Eintra

If we get Einter right, then we have
automatically object purity!
almost!

Learning 3D Point Clouds Segmentation
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o Idea: Superpoints are the component of a piecewise-constant
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Generalized Minimal Partition Problem

©

ei embeddings of the local geometry/radiometry

(4

Idea: Superpoints are the component of a piecewise-constant
approximation of the embedings

= argmanHf —el* + Z wij[fi # f],
feRexm (ij)€E
@ Superpoints: regions with homogeneous embeddings
@ Works well with handcrafted embeddings, should work with learned ones!
@ Problem: a non-convex, nondifferentiable, noncontinuous problem
°

Good approximations can be computed with fo-cut pursuit [Landrieu &
Obozinski SIIMS 2018]
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The Problem With the GMPP

f* _argmanHf—e,H —|—Z w;j [fi # fi],

Cx
fEREXm (ij)EE

@ Naive approach : loss as the quality of f* as a segmentation

accc df
o and

@ Problem:Those functions are not backpropagable.

@ To backpropagate we need:

Learning 3D Point Clouds Segmentation 6 /16
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o We propose a surrogate loss to learn meaningful embeddings

E(e)=f—| S bt S msvle—e) ],

(7,J) € Eintra (7,J) € Einter
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1
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(7,J) € Eintra (7,J) € Einter

@ ¢ minimum at 0, ¢ maximum at 0

P(x) = (VIxI?/?+1-1)
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Graph-Structured Contrastive Loss

o We propose a surrogate loss to learn meaningful embeddings

)= = 3 se-e)+ 3 mwle—e),

[El (i-/)EEintra (7:J) € Binter
@ ¢ minimum at 0, ¢ maximum at 0
o) = (/NPT T-1)
$(x) = max(1—|xI,0)
@ Promotes homogeneity within objects and contrast at their borders

o i j : weight of inter-edges
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Cross-Partition Weighting Strategy, cont’d

min( U],| V)

for (U,V)eé& wij = pu,v for all (i,j) € (U, V)

puyv = p

@ Role of y;; critical: assess impact
of missed edge.

@ Operate on G = (V, &) adjacency -
graph of cross-partition between &7t __#7""""" Tt
superpoints and real objects.
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Results
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We require 5 times less superpoints for similar performance!
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Results
Method | OA mAcc mloU
6-fold cross validation
PointNet 2017 78.5 66.2 47.6
Engelmann et al. in 2017 81.1 66.4 49.7
PointNet++ 2017 81.0 67.1 54.5
Engelmann et al. in 2018 84.0 67.8 58.3
SPG 2018 85.5 73.0 62.1
PointCNN 2018 88.1 75.6 65.4
Graph-LPE + SPG (ours) 87.8 77.5 67.6
Fold 5
PointNet 2017 - 49.0 41.1
Engelmann et al. in 2018 84.2 61.8 52.2
pointCNN 2018 85.9 63.9 57.3
SPG 2018 86.4 66.5 58.0
PCCN 2018 - 67.0 58.3
Graph-LPE + SPG (ours) 87.8 69.1 61.5
Table: S3DIS
Method | OA mAcc mloU
PointNet 2017 79.7 47.0 34.4
Engelmann 2018 79.7 57.6 35.6
Engelmann 2017 80.6 49.7 36.2
3P-RNN 2018 87.8 54.1 41.6

Graph-LPE + SPG (ours) | 852  62.4  49.7

Table: vKITTI
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ceiling
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lllustration

VKITTI
terrain
tree
vegetation
building
road
guard rail
traffic sign
traffic light
pole
misc
truck
car
van

unlabelled

prediction Ground Truth
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Conclusion

D3V o

Our paradigm for graph-structured learning and optimization:

Exploit the spatial regularity of the solution to increase speed and
precision.

Use neural networks to learn the inputs and parameters of efficient
optimization algorithms.

Use graph-structured optimization to compute the structure of neural
network adapted to the data.

All our work is online:
loicland/superpoint-graph 268 % 78 ¥
loicland/cut-pursuit 22% 7¥

1a7rOch3/parallel-cut-pursuit very soon!
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