INSTITUT NATIONAL DE LINFORMATION GÉOGRAPHIQUE ET FORESTIÉRE

Superpoint approach to 3D

Loic Landrieu

March 2019

Presentation Layout

Deep Learning for 3D Point Clouds

- A hard problem
- Data volume considerable.

- A hard problem
- Data volume considerable.
- Lack of grid-structure.

• A hard problem

- Data volume considerable.
- Lack of grid-structure.
- Permutation-invariance.

• A hard problem

- Data volume considerable.
- Lack of grid-structure.
- Permutation-invariance.
- Sparsity, variable density.

• A hard problem

- Data volume considerable.
- Lack of grid-structure.
- Permutation-invariance.
- Sparsity, variable density.
- What works:
- set based methods for shape embedding (PointNet)

• A hard problem

- Data volume considerable.
- Lack of grid-structure.
- Permutation-invariance.
- Sparsity, variable density.
- What works:
- set based methods for shape embedding (PointNet)
- graph convolution for relationships analysis

• A hard problem

- Data volume considerable.
- Lack of grid-structure.
- Permutation-invariance.
- Sparsity, variable density.
- What works:
- set based methods for shape embedding (PointNet)
- graph convolution for relationships analysis
- However: do not scale well at all.

SuperPoint-Graph

• Observation:

 $n_{\rm points} \gg n_{\rm objects}$.

Landrieu&Simonovski2018

Deep Learning for 3D Point Clouds

SuperPoint-Graph

• Observation:

 $n_{\rm points} \gg n_{\rm objects}$.

• Partition scene into superpoints with simple shapes.

Landrieu&Simonovski2018

SuperPoint-Graph

• Observation:

 $n_{\rm points} \gg n_{\rm objects}$.

- Partition scene into superpoints with simple shapes.
- Only a few superpoints, context leveraging with powerful graph methods.

Landrieu&Simonovski2018

• Semantic segmentation down to 3 sub-problems:

- Semantic segmentation down to 3 sub-problems:
- Geometric Partition : into simple shapes.

Complexity: very high (clouds of 10⁸ points)

Algorithm: ℓ_0 -cut pursuit

- Semantic segmentation down to 3 sub-problems:
- Geometric Partition : into simple shapes.

Complexity: very high (clouds of 10⁸ points)

Algorithm: ℓ_0 -cut pursuit

- Superpoint embedding: learning shape descriptors $\frac{Complexity:}{Algorithm: PointNet}$ low (subsampling to 128 points $\times \sim$ 1000 points)

- Semantic segmentation down to 3 sub-problems:
- Geometric Partition : into simple shapes.

Complexity: very high (clouds of 10⁸ points)

Algorithm: ℓ_0 -cut pursuit

- Superpoint embedding: learning shape descriptors <u>Complexity</u>: low (subsampling to 128 points $\times \sim$ 1000 points) Algorithm: PointNet
- Contextual Segmentation: using the global structure <u>Complexity:</u> very low (superpoint graph ~ 1000 sp) <u>Algorithm:</u> ECC with Gated Recurrent Unit (GRU)

Pipeline

Mathada		un la nu		+	huch	build-	hard-	arti-		
wethode	UA	miou	road	grass	tree	DUSH	ing	scape	fact	Cars
reduced test set: 78 699 329 points										
TMLC-MSR	86.2	54.2	89.8	74.5	53.7	26.8	88.8	18.9	36.4	44.7
DeePr3SS	88.9	58.5	85.6	83.2	74.2	32.4	89.7	18.5	25.1	59.2
SnapNet	88.6	59.1	82.0	77.3	79.7	22.9	91.1	18.4	37.3	64.4
SegCloud	88.1	61.3	83.9	66.0	86.0	40.5	91.1	30.9	27.5	64.3
SPG (Ours)	94.0	73.2	97.4	92.6	87.9	44.0	93.2	31.0	63.5	76.2
full test set: 2 091 952 018 points										
TMLC-MS	85.0	49.4	91.1	69.5	32.8	21.6	87.6	25.9	11.3	55.3
SnapNet	91.0	67.4	89.6	79.5	74.8	56.1	90.9	36.5	34.3	77.2
SPG (Ours)	92.9	76.2	91.5	75.6	78.3	71.7	94.4	56.8	52.9	88.4

Résultats qualitatif: S3DIS

Method	OA	mAcc	mloU	door	board
A5 PointNet	-	48.5	41.1	10.7	26.3
A5 SEGCloud	-	57.3	48.9	23.1	13.0
A5 SPG	86.4	66.5	58.0	61.5	2.1
PointNet	78.5	66.2	47.6	51.6	29.4
Engelmann	81.1	66.4	49.7	51.2	30.0
SPG	85.5	73.0	62.1	68.4	8.7

Method	OA	mAcc	mloU	door	board
A5 PointNet	-	48.5	41.1	10.7	26.3
A5 SEGCloud	-	57.3	48.9	23.1	13.0
A5 SPG	86.4	66.5	58.0	61.5	2.1
PointNet	78.5	66.2	47.6	51.6	29.4
Engelmann	81.1	66.4	49.7	51.2	30.0
SPG	85.5	73.0	62.1	68.4	8.7

Śtep	Time
Voxelisation	24
Features	88
Partition	447
SPG computation	436
Inference $\times 10$	60
Total	1055

Superpoint Partition

$$f^{*} = \underset{f \in \mathbb{R}^{C \times m}}{\arg\min} \sum_{i \in C} ||f_{i} - e_{i}||^{2} + \sum_{(i,j) \in E} w_{i,j} \left[f_{i} \neq f_{j}\right],$$

• $e \in \mathbb{R}^{C \times m}$: handcrafted descriptors of the local geometry/radiometry

Superpoint Partition

$$f^{\star} = \underset{f \in \mathbb{R}^{C \times m}}{\arg\min} \sum_{i \in C} \|f_i - e_i\|^2 + \sum_{(i,j) \in E} w_{i,j} \left[f_i \neq f_j\right],$$

- $e \in \mathbb{R}^{C \times m}$: handcrafted descriptors of the local geometry/radiometry
- Superpoints: connected components of a piecewise constant approximation of *e* structured by an adjacency graph.

Superpoint Partition

$$f^{\star} = \underset{f \in \mathbb{R}^{C \times m}}{\arg\min} \sum_{i \in C} \|f_i - e_i\|^2 + \sum_{(i,j) \in E} w_{i,j} \left[f_i \neq f_j\right],$$

- $e \in \mathbb{R}^{C imes m}$: handcrafted descriptors of the local geometry/radiometry
- Superpoints: connected components of a piecewise constant approximation of *e* structured by an adjacency graph.
- Problem: any errors made in the partition will carry in the prediction...

Presentation Layout

Learning 3D Point Clouds Segmentation

The Pipeline

Input Point Cloud

Learned Embedding

Oversegmentation General idea:

True Objects

- 1) Train a neural network to produce points embeddings with high contrast at the border of objects...
- 2) ... Which serve as inputs of a **nondifferentiable** segmentation algorithm.

• G = (C, E) a meaningful adjacency graph

- G = (C, E) a meaningful adjacency graph
- Construction is problem-dependant

- G = (C, E) a meaningful adjacency graph
- Construction is problem-dependant
- E_{inter} : set of inter-object edges

- G = (C, E) a meaningful adjacency graph
- Construction is problem-dependant
- *E*_{inter} : set of inter-object edges
- E_{intra} : set of intra-object edges

- G = (C, E) a meaningful adjacency graph
- Construction is problem-dependant
- E_{inter} : set of inter-object edges
- *E*_{intra} : set of intra-object edges
- We want embeddings with high contrast at *E*_{inter} and similar value at *E*_{intra}

- G = (C, E) a meaningful adjacency graph
- Construction is problem-dependant
- E_{inter} : set of inter-object edges
- E_{intra} : set of intra-object edges
- We want embeddings with high contrast at *E*_{inter} and similar value at *E*_{intra}
- If we get *E*_{inter} right, then we have automatically object purity!

- G = (C, E) a meaningful adjacency graph
- Construction is problem-dependant
- E_{inter} : set of inter-object edges
- E_{intra} : set of intra-object edges
- We want embeddings with high contrast at *E*_{inter} and similar value at *E*_{intra}
- If we get *E*_{inter} right, then we have automatically object purity! almost!

• *e_i* embeddings of the local geometry/radiometry

- *e_i* embeddings of the local geometry/radiometry
- Idea: Superpoints are the component of a piecewise-constant approximation of the embedings

$$f^{*} = \underset{f \in \mathbb{R}^{C \times m}}{\arg\min} \sum_{i \in C} ||f_{i} - e_{i}||^{2} + \sum_{(i,j) \in E} w_{i,j} [f_{i} \neq f_{j}],$$

- *e_i* embeddings of the local geometry/radiometry
- Idea: Superpoints are the component of a piecewise-constant approximation of the embedings

$$f^{\star} = \operatorname*{argmin}_{f \in \mathbb{R}^{C \times m}} \sum_{i \in C} ||f_i - e_i||^2 + \sum_{(i,j) \in E} w_{i,j} [f_i \neq f_j],$$

• Superpoints: regions with homogeneous embeddings

- *e_i* embeddings of the local geometry/radiometry
- Idea: Superpoints are the component of a piecewise-constant approximation of the embedings

$$f^{*} = \underset{f \in \mathbb{R}^{C \times m}}{\arg\min} \sum_{i \in C} ||f_{i} - e_{i}||^{2} + \sum_{(i,j) \in E} w_{i,j} [f_{i} \neq f_{j}],$$

- Superpoints: regions with homogeneous embeddings
- Works well with handcrafted embeddings, should work with learned ones!

- *e_i* embeddings of the local geometry/radiometry
- Idea: Superpoints are the component of a piecewise-constant approximation of the embedings

$$f^{\star} = \underset{f \in \mathbb{R}^{C \times m}}{\arg\min} \sum_{i \in C} ||f_i - e_i||^2 + \sum_{(i,j) \in E} w_{i,j} \left[f_i \neq f_j\right],$$

- Superpoints: regions with homogeneous embeddings
- Works well with handcrafted embeddings, should work with learned ones!
- Problem: a non-convex, nondifferentiable, noncontinuous problem

- *e_i* embeddings of the local geometry/radiometry
- Idea: Superpoints are the component of a piecewise-constant approximation of the embedings

$$f^{*} = \underset{f \in \mathbb{R}^{C \times m}}{\arg\min} \sum_{i \in C} ||f_{i} - e_{i}||^{2} + \sum_{(i,j) \in E} w_{i,j} [f_{i} \neq f_{j}],$$

- Superpoints: regions with homogeneous embeddings
- Works well with handcrafted embeddings, should work with learned ones!
- Problem: a non-convex, nondifferentiable, noncontinuous problem
- \bullet Good approximations can be computed with $\ell_0\text{-}cut$ pursuit [Landrieu & Obozinski SIIMS 2018]

The Problem With the GMPP

$$f^{\star} = \operatorname*{argmin}_{f \in \mathbb{R}^{C \times m}} \sum_{i \in C} ||f_i - e_i||^2 + \sum_{(i,j) \in E} w_{i,j} \left[f_i \neq f_j\right],$$

• Naive approach : loss as the quality of f^* as a segmentation

The Problem With the GMPP

$$f^{\star} = \underset{f \in \mathbb{R}^{C \times m}}{\arg\min} \sum_{i \in C} ||f_i - e_i||^2 + \sum_{(i,j) \in E} w_{i,j} \left[f_i \neq f_j\right],$$

- Naive approach : loss as the quality of f^* as a segmentation
- To backpropagate we need: $\frac{\partial CCC}{\partial f^*}$ and $\frac{\partial f^*}{\partial e}$

$$f^{\star} = \underset{f \in \mathbb{R}^{C \times m}}{\arg\min} \sum_{i \in C} ||f_i - e_i||^2 + \sum_{(i,j) \in E} w_{i,j} [f_i \neq f_j],$$

- Naive approach : loss as the quality of f^* as a segmentation
- To backpropagate we need: $\frac{\partial CCC}{\partial f^*}$ and $\frac{\partial f^*}{\partial e}$
- Problem: Those functions are not backpropagable.

• We propose a *surrogate* loss to learn meaningful embeddings

$$\ell(e) = rac{1}{|E|} \left(\sum_{(i,j) \in \mathcal{E}_{\mathsf{intra}}} \phi\left(e_i - e_j
ight) + \sum_{(i,j) \in \mathcal{E}_{\mathsf{inter}}} \mu_{i,j} \psi\left(e_i - e_j
ight)
ight),$$

• We propose a surrogate loss to learn meaningful embeddings

$$\ell(e) = \frac{1}{|E|} \left(\sum_{(i,j) \in \mathcal{E}_{\mathsf{intra}}} \phi(e_i - e_j) + \sum_{(i,j) \in \mathcal{E}_{\mathsf{inter}}} \mu_{i,j} \psi(e_i - e_j) \right),$$

• ϕ minimum at 0, ψ maximum at 0

$$\begin{aligned} \phi(x) &= \delta(\sqrt{\|x\|^2/\delta^2 + 1} - 1) \\ \psi(x) &= \max(1 - \|x\|, 0) \end{aligned}$$

• We propose a surrogate loss to learn meaningful embeddings

$$\ell(e) = \frac{1}{|E|} \left(\sum_{(i,j) \in E_{\text{intra}}} \phi\left(e_i - e_j\right) + \sum_{(i,j) \in E_{\text{inter}}} \mu_{i,j} \psi\left(e_i - e_j\right) \right),$$

• ϕ minimum at 0, ψ maximum at 0

$$\begin{aligned} \phi(x) &= \delta(\sqrt{\|x\|^2/\delta^2 + 1} - 1) \\ \psi(x) &= \max(1 - \|x\|, 0) \end{aligned}$$

Promotes homogeneity within objects and contrast at their borders

• We propose a surrogate loss to learn meaningful embeddings

$$\ell(e) = \frac{1}{|E|} \left(\sum_{(i,j) \in \mathcal{E}_{intra}} \phi(e_i - e_j) + \sum_{(i,j) \in \mathcal{E}_{inter}} \mu_{i,j} \psi(e_i - e_j) \right),$$

• ϕ minimum at 0, ψ maximum at 0

$$\begin{aligned} \phi(x) &= \delta(\sqrt{\|x\|^2/\delta^2 + 1} - 1) \\ \psi(x) &= \max(1 - \|x\|, 0) \end{aligned}$$

- Promotes homogeneity within objects and contrast at their borders
- $\mu_{i,j}$: weight of inter-edges

Cross-Partition Weighting Strategy, cont'd

$$\mu_{U,V} = \mu \frac{\min\left(\mid U \mid, \mid V \mid\right)}{\mid (U,V) \mid} \quad \text{for } (U,V) \in \mathcal{E} \qquad \mu_{i,j} = \mu_{U,V} \text{ for all } (i,j) \in (U,V)$$

- Role of μ_{i,j} critical: assess impact of missed edge.
- Operate on G = (V, E) adjacency graph of cross-partition between superpoints and real objects.

Results

Illustration

Input cloud

Graph-LPE (ours)

Ground truth objects

VCCS, Papon et al. 2013

LPE embeddings

Lin et al. 2018

Illustration

Results

Method	OA	mAcc	mloU		
6-fold cross validation					
PointNet 2017	78.5	66.2	47.6		
Engelmann et al. in 2017	81.1	66.4	49.7		
PointNet++ 2017	81.0	67.1	54.5		
Engelmann <i>et al.</i> in 2018	84.0	67.8	58.3		
SPG 2018	85.5	73.0	62.1		
PointCNN 2018	88.1	75.6	65.4		
Graph-LPE + SPG (ours)	87.8	77.5	67.6		
Fold 5					
PointNet 2017	-	49.0	41.1		
Engelmann <i>et al.</i> in 2018	84.2	61.8	52.2		
pointCNN 2018	85.9	63.9	57.3		
SPG 2018	86.4	66.5	58.0		
PCCN 2018	-	67.0	58.3		
Graph-LPE + SPG (ours)	87.8	69.1	61.5		

Table: S3DIS

Method	OA	mAcc	mloU
PointNet 2017	79.7	47.0	34.4
Engelmann 2018	79.7	57.6	35.6
Engelmann 2017	80.6	49.7	36.2
3P-RNN 2018	87.8	54.1	41.6
Graph-LPE+SPG (ours)	85.2	62.4	49.7

Table: vKITTI

Illustration

Input Cloud

Oversegmentation

prediction

Ground Truth

Illustration

Presentation Layout

Learning 3D Point Clouds Segmentation

- Our paradigm for graph-structured learning and optimization:
- Exploit the spatial regularity of the solution to increase speed and precision.

- Our paradigm for graph-structured learning and optimization:
- Exploit the spatial regularity of the solution to increase speed and precision.
- Use neural networks to learn the inputs and parameters of efficient optimization algorithms.

- Our paradigm for graph-structured learning and optimization:
- Exploit the spatial regularity of the solution to increase speed and precision.
- Use neural networks to learn the inputs and parameters of efficient optimization algorithms.
- Use graph-structured optimization to compute the structure of neural network adapted to the data.

- Our paradigm for graph-structured learning and optimization:
- Exploit the spatial regularity of the solution to increase speed and precision.
- Use neural networks to learn the inputs and parameters of efficient optimization algorithms.
- Use graph-structured optimization to compute the structure of neural network adapted to the data.
- All our work is online:
- 🗘 loicland/superpoint-graph 268 ★ 78 🖗
- 🗘 loicland/cut-pursuit 22 ★ 7 🖗
- 1a7r0ch3/parallel-cut-pursuit very soon!