# Graph Signal Processing on directed graph for modelling and learning

#### Pierre Borgnat

DR CNRS - Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, France Equipe Sisyphe (Signaux, Systèmes et Physique) et IXXI (Institut Rhônalpin des Systèmes Complexes)

Montpellier, 05/2019











# Scope of the work

- Extension of Graph Signal Processing to directed graphs
- The motivation: tasks of signal modelling and/or learning on digraphs
- Joint work with Harry Sevi (PhD defended in Novembre 2018) and Gabriel Rilling (CEA List)
- Other collaborators (thanked also for some of the figures of the talk) : Nicolas Tremblay, Sophie Achard, Paulo Goncalves, Cédric Richard, Fei Hua
  - Work supported by:
    - ANR-14-CE27-0001 GRAPHSIP grant
    - ACADEMICS grant in the Scientific Breakthrough Program IDEXLYON, Programme Investissements d?Avenir ANR-16-IDEX-0005

### Data as graphs

A graph G = (V, E), set of nodes in V and edges in E



$$V = \{blue, green, orange, red\}$$
 and  $E = \{(b, g), (g, o), (o, b), (b, r)\}$ 

Good to represent relations (∈ E) between entities (∈ V)



[Roth et al., 2011]

## Data as graphs

Good to detect groups in the data ( $\simeq$  clustering)





Blogosphere US 2004 [Adamic et al. 2005]

Mobile phones [Blondel et al., 2008]

BSS Vélo'v in Lyon [Borgnat et al., 2013]

Good to code irregular shapes, for compression, denoising,...



[R. Hamon et al., 2016]





[Cours, N. Pustelnik & P.B., ENSL]

### Data as graphs and graph signals

• Given a graph G, let's consider a **graph-signal** x on the nodes V. If N = |V|, we have  $x \in \mathbb{R}^N$  (could be in  $\mathbb{C}^N$  or multivariate)



**USA** Temperature



Image Grid



Minnesota Roads



Color Point Cloud



fMRI Brain Network



Image Database

### Data as graphs and graph signals

The question: How to apply signal processing on this data / signal?



Undirected graph [G.Ghoshal (2009), Potterat et al. (2002)]



**Directed** graph [G. Michau, PB et al., 2017]

## **Graph Signal Processing**

- "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains" David I Shuman; Sunil K. Narang; Pascal Frossard; Antonio Ortega; Pierre Vandergheynst, IEEE Signal Processing Mag., May 2013
- "Discrete Signal Processing on Graphs" Aliaksei Sandryhaila, Jose M. F. Moura IEEE Transactions on Signal Processing, April 2013
- "Graph signal processing: Overview, challenges, and applications". A. Ortega, P. Frossard, J. Kovacević, J.M.F. Moura, P. Vandergheynst Proceedings of the IEEE, 106 (5), 808-828, 2018
- "Cooperative and Graph Signal Processing" Ed. Petar Djuric and Cédric Richard Academic Press, 2018

### Some basics in signal/image processing:

- Alternate representation domains of signals are useful:
   Fourier transform, DCT, time-frequency, wavelets, chirplets,...
- Among them, the Fourier transform is paramount Given a times series  $x_n, n = 1, 2, ..., N$ , let its Discrete Fourier Transform (DFT) be

$$\forall k \in \mathbb{Z} \quad \hat{x}_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi kn/N}$$

(for spectral analysis, filtering, computation, sampling...)

### Some basics in graph-signal processing:

- Fourier transform based on the spectral domain of graph
- Develop the analog of classical SP operations by analogy: denoising, compression, estimation, detection, sampling,...

# Two useful matrices describing graphs

### Adjacency matrix

$$egin{array}{c|cccc} A & \mbox{adjacency matrix} & A_{ij} = 1 \mbox{ if } (i,j) \in E, \mbox{ else } 0 \mbox{ } d_i = \sum_{j \in V} A_{ij} \mbox{ } D = \mbox{ diag}(d) \mbox{ } \end{array}$$

Laplacian matrix (for undirected and connected G)

Lor 
$$\mathscr{L}$$
 | laplacian matrix |  $L = D - A$  or  $\mathscr{L} = I - D^{-1/2}AD^{-1/2}$  | L's eigenvalues |  $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le ... \le \lambda_{N-1}$  | L's eigenvectors |  $L\chi_i = \lambda_i\chi_i$  | L's eigenvectors |

Also for L,  $\chi_0 = 1$ ;  $\chi_1$  (Fiedler vector) is good to bisect a graph



### A Fundamental analogy for undirected graphs

[Shuman et al., IEEE SP Mag, 2013]

### A fundamental analogy

On any graph, the eigenvectors  $\chi_i$  of the Laplacian matrix L will be **considered as the Fourier modes**, and its eigenvalues  $\lambda_i$  the associated (squared) frequencies.

Hence, a Graph Fourier Transform is defined as:

$$\hat{x} = \chi^{\top} x$$

where  $\chi = (\chi_0|\chi_1|\dots|\chi_{N-1}).$ 

- Two ingredients:
  - Fourier modes = Eigenvectors  $\chi_i$  (with increasing oscillations)
  - Frequencies = The measures of variations of an eigenvector is linked to its eigenvalue:

$$\frac{||\nabla \chi_i||^2}{||\chi_i||^2} = \lambda_i$$

because:  $\forall \mathbf{x} \in \mathbb{R}^N$   $\sum A_{ij}(\mathbf{x}_i - \mathbf{x}_j)^2 = \mathbf{x}^\top \mathbf{L} \mathbf{x}$  is the Dirichlet norm

### Fourier modes: examples in 1D and in graphs

#### LOW FREQUENCY:





### HIGH FREQUENCY:





Introduction to GSP

### Interplay structure - signal for assessing smoothness



[D. Shuman et al., 2013]

# Filtering

### Definition of graph filtering

We define a linear filter  $\mathcal{H}$  by its function h in the Fourier domain. It is discrete and defined on the eigenvalues  $\lambda_i \to h(\lambda_i)$ .

$$\widehat{\mathcal{H}(x)} = \begin{pmatrix} h(\lambda_0) \, \hat{x}(0) \\ h(\lambda_1) \, \hat{x}(1) \\ h(\lambda_2) \, \hat{x}(2) \\ h(\lambda_{N-1}) \, \hat{x}(N-1) \end{pmatrix} = \hat{\boldsymbol{H}} \, \hat{\boldsymbol{x}} \text{ with } \hat{\boldsymbol{H}} = \begin{pmatrix} h(\lambda_0) & 0 & 0 & \dots & 0 \\ 0 & h(\lambda_1) & 0 & \dots & 0 \\ 0 & 0 & h(\lambda_2) & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & h(\lambda_{N-1}) \end{pmatrix}$$

In the node-space, the filtered signal  $\mathcal{H}(x)$  can be written:

$$\mathcal{H}(x) = \chi \hat{\boldsymbol{H}} \chi^{\top} x$$

In term of calculus of operator on a graph, this reads

$$\mathcal{H}(x) = h(L) \cdot x$$

### Filtering - Illustration

Input graph signal: a noisy version of a signal, with additive Gaussian



 $\begin{array}{c}
\stackrel{\cong}{\underset{\longleftarrow}{\otimes}} 0.5 \\
0 \\
0 \\
0 \\
\lambda/\lambda_{max}
\end{array}$ 

· Denoising by filtering



[N. Tremblay, P. Gonçalves, P.B., 2018]

### Filtering – Example for Recovery

• Denoising of a graph signal, when observing  $y = x_0 + \epsilon$ , formulated as an inverse problem:

$$X_* = \arg\min_{x} ||x - y||_2^2 + \gamma X^{\top} \mathbf{L} X$$

because remember that :  $x^{\top} L x = \sum_{i} A_{ij} (x_i - x_j)^2$ 

- Graph-Fourier coefficients:  $\hat{x} = \chi^{\top} x$
- Solution:  $\hat{x_*}(i) = \frac{1}{1 + \gamma \lambda_i} \hat{y}(i)$  (a "1st-order low pass" filter)



[P. Vandergheynst, EPFL, 2013]

# Alternative versions of graph signal processing and filters

- Alternative definition of GSP:
  - Any Reference (or Shift) operator R can be used instead of L
  - Discrete Signal Processing on Graphs: R = A
- Alternative definition of graph filters:
  - An operator H that commutes with the Reference operator (HR = RH) can be called a filter
  - Intuition: they share the same spectral eigenspace, hence the filter will act independently at each frequency
  - Parametric formulation: filters can be written as:

$$h(\mathbf{R}) = \sum_{k=0}^{K} h_k \mathbf{R}^k$$

(leads to ARMA filters; to distributed implementations;...)

# What about directed graphs?

Thesis of Harry Sevi, 2018; joint work G. Rilling (CEA LIST)

| Graph         | cyclic          | undirected                                          | directed |
|---------------|-----------------|-----------------------------------------------------|----------|
|               |                 | 1 2<br>4 3                                          | 3 4      |
| Fourier Modes | $e^{i\omega t}$ | χ                                                   | ?        |
| Operator      |                 | L                                                   | ?        |
| Frequency     | $\omega$        | λ                                                   | ?        |
| Variation     |                 | $\langle oldsymbol{\chi}, L oldsymbol{\chi}  angle$ | ?        |

### Measure of Variations

#### Undirected:

$$\mathcal{D}(\mathbf{f}) = rac{1}{2} \sum_{i,j} \mathbf{a}_{ij} |f_i - f_j|^2$$

$$= \langle \mathbf{f}, \mathbf{L} \mathbf{f} \rangle$$
with

$$= \langle \mathbf{f}, \mathbf{L}\mathbf{f} \rangle$$
with

$$\mathbf{L} = \mathbf{D} - \mathbf{A}$$
.

#### Directed:

$$egin{align} \mathcal{D}_{\pi,\mathbf{p}}^2(\mathbf{f}) &= rac{1}{2} \sum_{i,j} \pi_i \mathbf{p}_{ij} |f_i - f_j|^2. \ &= \langle \mathbf{f}, \mathbf{L}_{dir} \mathbf{f} 
angle. \ & ext{with} \ \end{split}$$

$$\mathbf{L}_{dir} = \mathbf{\Pi} - \frac{\mathbf{\Pi} \mathbf{P} + \mathbf{P}^{\mathsf{T}} \mathbf{\Pi}}{2}$$
[Chung, 2005]

- Directed case
  - use of  $\mathbf{P} = \mathbf{D}^{-1}\mathbf{A}$  the random walk operator
  - and its associated stationary distribution  $\pi$ , with the diagonal matrix  $\Pi$  associated to it
- Undirected case :  $\Pi \propto \mathbf{D} \Rightarrow \mathbf{L}_{dir} \propto \mathbf{L}$ .

## Fourier modes on directed graphs

### Reference operator: the Random walk operator

- Random walk X<sub>n</sub>: position X at time n.
- $\mathbf{P}_{ij} = \mathbb{P}(X_n = j | X_{n-1} = i)$  is its transition probability

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \mathbf{D}^{-1} \mathbf{A}$$



#### **Proposed Fourier Modes:**

- Eigenvectors  $\mathbf{P}\boldsymbol{\xi}_k = \theta_k \boldsymbol{\xi}_k$
- Fourier representation of s

$$\mathbf{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_N]$$
 the basis

$$oldsymbol{s} = \sum_k \hat{oldsymbol{s}}_k oldsymbol{\xi}_k = oldsymbol{\Xi} \hat{oldsymbol{s}}.$$

where  $\hat{\mathbf{s}} = [\hat{\mathbf{s}}_1, \dots, \hat{\mathbf{s}}_N]^{\top}$  are the Fourier coefficients

• Digraph Fourier Transform:

$$\hat{\boldsymbol{s}} = \boldsymbol{\Xi}^{-1} \boldsymbol{s}$$

• Beware : complex eigenvalues :  $\theta = \alpha + i\beta$ ,  $|\theta| \le 1$ .

### Frequency analysis of modes of P

#### Fourier Modes:

$$[\boldsymbol{\xi}_1,\ldots,\boldsymbol{\xi}_N]$$

#### Variations:

$$\mathcal{D}_{\pi,\mathbf{P}}^2(\mathbf{f}) = \langle \mathbf{f}, \mathbf{L}_{dir} \mathbf{f} \rangle$$

### Frequency analysis:

$$\frac{\mathcal{D}_{\pi,\mathbf{P}}^{2}(\boldsymbol{\xi})}{\langle \boldsymbol{\xi},\boldsymbol{\Pi}\boldsymbol{\xi}\rangle} = 1 - \mathfrak{Re}(\theta)$$

• Let's define the **frequency** of  $\xi$  from its complex eigenvalue  $\theta$ :

$$\omega = 1 - \mathfrak{Re}(\theta), \quad \omega \in [0, 2]$$

["Analyse fréquentielle et filtrage sur graphes dirigés", Sevi et al., GRETSI, 2017]

# Summary of the proposed framework for directed graphs

| Graphe       | cyclic          | undirected                                          | directed                                                                    |
|--------------|-----------------|-----------------------------------------------------|-----------------------------------------------------------------------------|
|              |                 | 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4             | 3 4                                                                         |
| Fourier Mode | $e^{i\omega t}$ | χ                                                   | ξ                                                                           |
| Operator     |                 | L                                                   | Р                                                                           |
| Frequency    | $\omega$        | λ                                                   | $\omega = 1 - \mathfrak{Re}(\theta)$                                        |
| Variation    |                 | $\langle oldsymbol{\chi}, L oldsymbol{\chi}  angle$ | $\langle oldsymbol{\xi}, oldsymbol{L}_{\mathit{dir}} oldsymbol{\xi}  angle$ |

## Comparison to other GFT for directed graphs

### [Sandryhaila et al., 2014] DSP for graphs:

- (+) A straightforward generalisation of usual DSP
- (-) Ad-hoc definition of frequency, based on  $TV^1(x) = ||x \mathbf{A}_{norm}x||_1$
- (-) Does not generalize GSP as used on undirected graphs

#### [Sardellitti et al., 2017, Shafipour et al., 2017]:

Orthonormal Fourier basis related to original measures of variations

- (+) The measures of variations are interesting
- (-) The basis is found by some non convex optimisation problem
- (-) The Fourier modes are not eigenmodes of some operator
- (-) Do not generalize classical GSP on undirected graphs

### Some learning tasks with GFT on digraphs

#### Two case studies:

- Semi-supervised learning: Estimation of missing data (signals) as done in [Zhou et al., ICML 2005]
- Parametric modelling of signals: e.g., for compression as done in [Sandryhaila et al., 2014]

### Applications on the political blog data of US 2004 [Adamic et al., 2004]



- Node : A political blog.
- Edge: A hyper-link from on blog to another (directed)
- Signal: The political side (democrat or republican)

- Setting: some known nodes with labels ("-1", "+1"), and others with unknown labels ("0")
- The semi-supervised learning problem is to estimate labels for the unknown ones
- Solution formulated as a minimisation problem



# Example of SSL on the blog's data



### Parametric modelling

#### **Problem formulation**

- Model a graph signal f, e.g., for compression or inpainting
- Assumption: a partial observation y of f

#### **Objective**

- Estimate a parametric modeling of f
- Recover the missing data points from v

- We observe  $\mathbf{y} = \varepsilon \mathbf{f}$ , where the  $\varepsilon_k = 1$  if known, else 0
- Decide upon a reference operator, noted R, first R = P or A
- Model the signal thanks to a parametric graph filter H:

$$\mathbf{H}(\boldsymbol{\theta}) = \sum_{k=0}^{K} \theta_k \mathbf{R}^k, \quad \theta_k \in \mathbb{R}. \tag{1}$$

Parameter estimation

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} = \{\theta_k\}_{k=0}^K \in \mathbb{R}^{K+1}}{\operatorname{argmin}} \mathbb{E} \left[ \| \boldsymbol{f} - \sum_{k=0}^K \theta_k \mathbf{R}^k \boldsymbol{y} \|_{\mu}^2 \right], \tag{2}$$

- (that has well-known solution)
- Signal model :

$$\hat{\boldsymbol{f}}(\theta) = \sum_{k=0}^{K} \hat{\theta}_k \mathbf{R}^k \boldsymbol{y}$$

# Experimental results (1)



### Alternative Reference Operator (1)

#### Other Reference operators R could be used :

- $\mathbf{P}^*$ , associated to the time reversed random walk:  $\mathbf{P}^* = \mathbf{\Pi}^{-1} \mathbf{P}^{\top} \mathbf{\Pi}$ .
- $\bar{\textbf{P}}$ , the additive reversibilization of P:  $\bar{\textbf{P}} = \frac{\textbf{P} + \textbf{P}^*}{2}$ .

**Prop.:** P, P\*, P lead all to DiGFT with frequency related to Variations

# Experimental results (2)



- $\mathbf{P}^*$ , associated to the time reversed random walk:  $\mathbf{P}^* = \mathbf{\Pi}^{-1} \mathbf{P}^{\top} \mathbf{\Pi}$ .
- $\bar{\mathbf{P}}$ , the additive reversibilization of  $\mathbf{P}$ :  $\bar{\mathbf{P}} = \frac{\mathbf{P} + \mathbf{P}^*}{2}$ .

Generalization: convex combination between P and P\*

$$\mathbf{P}_{\alpha} = (\mathbf{1} - \alpha)\mathbf{P} + \alpha\mathbf{P}^*$$

for  $\alpha \in [0, 1]$ .

**Prop.:**  $P_{\alpha}$  leads all to DiGFT with frequency related to Variations



### Designing Convex Combination of Graph Filters

joint work with F. Hua, J. Chen, H. Wang, P. Gonçalves, C. Richard

- The convex combination of operators does not lead to convex optimization problem:
  - Let us consider  $\mathbf{S} = \alpha \mathbf{S}_1 + (1 \alpha) \mathbf{S}_2$
  - A filter  $\mathbf{H} = \sum_{\ell=0}^{L-1} h_{\ell} \mathbf{S}^{\ell}$
  - Observations of input x & output y of this filter:

$$\mathbf{y} = \mathbf{H}\mathbf{x}$$

• The estimation of  ${\bf h}$  and  $\alpha$  by minimising the cost:

$$J(\mathbf{h}, \alpha) = \left\| \mathbf{y} - \sum_{\ell=0}^{L-1} h_{\ell}(\alpha \mathbf{S}_{1} + (1-\alpha)\mathbf{S}_{2})^{\ell} \mathbf{x} \right\|^{2}$$

is non convex w.r.t. **h** and  $\alpha!$ 

This would still not be the case by adding two filters:

 $J'(\mathbf{h}, \alpha) = \left\| \mathbf{y} - \left[ \alpha (\sum_{\ell=0}^{L-1} h_{1,\ell} \mathbf{S}_1^{\ell}) + (1-\alpha) \sum_{\ell=0}^{L-1} h_{2,\ell} \mathbf{S}_2^{\ell} \right] \mathbf{x} \right\|^2$ 

# Designing Convex Combination of Graph Filters

joint work with F. Hua, J. Chen, H. Wang, P. Gonçalves, C. Richard

- Solution: use the approach of ["Simple MKL", Rakotomamonjy et al., JLMR 2008]
- The combination is now of different filters:

$$\mathbf{H} = \sum_{\ell=0}^{L-1} h_{1,\ell} \mathbf{S}_1^{\ell} + h_{2,\ell} \mathbf{S}_2^{\ell}$$

 The combination is now regularised and controlled by minimizing a balance between the norms of the vectors of filter coefficients:

$$m{h}_1^*, m{h}_2^*, lpha^* = \operatorname*{arg\,min}_{m{h}_1, m{h}_2, lpha} \quad \frac{1}{2} \left( \frac{\|m{h}_1\|^2}{lpha} + \frac{\|m{h}_2\|^2}{1-lpha} \right) + \frac{1}{2\mu} \sum_{k=1}^N e_k^2$$

subject to:

$$e_k = y_k - \boldsymbol{h}_1^{\top} \boldsymbol{m}_{1,k} - \boldsymbol{h}_2^{\top} \boldsymbol{m}_{2,k}, \quad k \in \{1, \dots, N\}$$
  
  $0 < \alpha < 1,$ 

where  $m_{1,k}^{\top}$  is the k-th row of the matrix  $\mathbf{M}_1$ , itself is obtained by concatenation as  $[\mathbf{M}_1]_{..\ell} = \mathbf{S}_1^{\ell-1}\mathbf{x}$ ; idem for  $m_{2,k}^{\top}$ 

- joint work with F. Hua, J. Chen, H. Wang, P. Goncalves, C. Richard
- The problem is now an optimization problem that is jointly convex w.r.t.  $\mathbf{h}_1$ ,  $\mathbf{h}_2$  and  $\alpha$
- Solution obtained with a two-step procedure, w.r.t.  $\mathbf{h}_1$ ,  $\mathbf{h}_2$  and then  $\alpha$

#### Algorithm 1

Input:  $x, y, S_1, S_2, L$ .

**Initialize**: randomly choose  $0 < \alpha_{-1}^* < 1$ , compute  $M_1, M_2$ .

#### Repeat:

- 1: solve (22) with a generic QP solver to get  $\lambda^*$ compute  $h_1^*, h_2^*$  from (21),
- 2: update  $\alpha^*$  by using (25).

Until: stopping condition is satisfied.

**Output**:  $h_1^*, h_2^*, \alpha^*$ .

$$\lambda^* = \arg \max_{\lambda \in \mathbb{R}^N} -\frac{1}{2} \lambda^\top (R_\alpha + \mu I) \lambda + \lambda^\top y$$
with  $R_\alpha = \alpha M_1 M_1^\top + (1 - \alpha) M_2 M_2^\top$ .
$$\begin{cases} h_1^* = \alpha \sum_{k=1}^N \lambda_k^* m_{1,k} \\ h_2^* = (1 - \alpha) \sum_{k=1}^N \lambda_k^* m_{2,k} \end{cases}$$

$$(21) \quad \alpha_i^* = \left(1 + \frac{1 - \alpha_{i-1}^*}{\alpha_{i-1}^*} \sqrt{\frac{\lambda^{*\top} M_2 M_2^\top \lambda^*}{\lambda^{*\top} M_1 M_1^\top \lambda^*}}\right)^{-1}$$

$$(25) \quad \alpha_i^* = \left(1 + \frac{1 - \alpha_{i-1}^*}{\alpha_{i-1}^*} \sqrt{\frac{\lambda^{*\top} M_2 M_2^\top \lambda^*}{\lambda^{*\top} M_1 M_1^\top \lambda^*}}\right)^{-1}$$

### Designing Convex Combination of Graph Filters

Application: Signal recovery on the political blogs

- Combined operators: S<sub>1</sub> = P and S<sub>1</sub> = P\*
- Accuracy result:



## Perspectives for GSP on directed graphs

- A full framework to generalize Laplacian-based approaches to digraphs,
  - using random walk (or generalisations  $\mathbf{P}_{\alpha}$ ) as Reference operator
  - and L<sub>dir</sub> to measure variations and define frequency
- Re-interpretation of SSL: Improvement of parametric modelling
- · More developments:
  - Spectral wavelets and diffusion wavelets with **P** on digraphs see [H. Sevi, G. Rilling, P.B., arXiv:1811.11636]
- Recent interests in combining that and more machine learning cf. ACADEMICS project (SB IDEXLYON)
- Contact and more information:

http://perso.ens-lyon.fr/pierre.borgnat



|              | Classic DSP                        |          | Directed cycle graph                 |
|--------------|------------------------------------|----------|--------------------------------------|
| Eigenvectors | $e^{i\omega t}$ , $e^{-i\omega t}$ | =        | $\theta^t,ar{	heta}^t$               |
| Eigenvalues  | $e^{i\omega},e^{-i\omega}$         | =        | $	heta,ar{	heta}$                    |
| Frequencies  | $\omega, -\omega$                  | <i>≠</i> | $	heta,ar{	heta}=(1-\omega)\pm ieta$ |

# On a directed torus graph



Directed torus graph



Eigenvalues of P.

# On a directed torus graph

We show 2 eigenmodes of same frequency and different (non conjugate) imaginary parts



- Results depends on the sampling law for  $\varepsilon$  (where  $t = \varepsilon f$ )
- A limit of choosing P: it requires a strongly connected graph...
- 1) use connected components.
- or 2) modify the graph
  - add a small rank-one perturbation (Cons: non-sparse)
  - construct the "google" matrix: complete dangling nodes (i.e., nodes with  $d^{out} = 0$ ) and then add a probability of jumping anywhere

### Experimental results (4)

