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Scope of the work

• Extension of Graph Signal Processing to directed graphs
• The motivation: tasks of signal modelling and/or learning on digraphs

• Joint work with Harry Sevi (PhD defended in Novembre 2018)
and Gabriel Rilling (CEA List)

• Other collaborators (thanked also for some of the figures of the talk) :
Nicolas Tremblay, Sophie Achard, Paulo Gonçalves, Cédric Richard, Fei Hua

• Work supported by:
• ANR-14-CE27-0001 GRAPHSIP grant
• ACADEMICS grant in the Scientific Breakthrough Program IDEXLYON, Programme

Investissements d?Avenir ANR-16-IDEX-0005

p. 2



Introduction to GSP Filtering GSP on Digraph Learning on digraphs Ccl +

Data as graphs

• A graph G = (V ,E), set of nodes in V and edges in E

V = {blue, green, orange, red} and E = {(b, g), (g, o), (o, b), (b, r)}

• Good to represent relations (∈ E) between entities (∈ V )4

FIG. 3: Structure of flows at 20% and 40% of the total flow. At 20% of the total flow, we observe sources (represented as squares)
with outdegree kout = 3 such as London Bridge, Stratford, or Waterloo connecting to three different centers (represented as
circles), as well as sources with kout = 2 (eg. Victoria) and kout = 1 (eg. Elephant and Castle). We also show how the pattern of
flows is constructed iteratively when we go to larger fraction of the total flow (from 20% shown in black to 40% shown in red).
We represent in red the new sources, centers and connections. The new sources connect to the older centers (eg. West End,
City, etc) and the existing sources (eg. Victoria) connect to new centers (eg. Northern stations, Museums, and Parliament).

tailing a map starting with highways, then concentrat-
ing on roads, and then on streets. If we consider the
flows up to W = 20% of the total flow, we obtain the
structure that we show in Figure 3.

At this scale, it is clear that we have three main cen-
ters and sources (with various outdegree values), which
mostly correspond to intermodal rail-subway connec-
tions. Adding more links, we reach a fraction W = 40%
of the total flow and we then investigate smaller flows
at a smaller scale. We see that we have new sources ap-
pearing at this level and new connections from sources
that were present at W = 20%. We can quantify in a
more precise way how the structure of flows evolves
when we investigate smaller flows by exploring the list
of flows wiC in decreasing order and by introducing the
transition matrix T , which describes how the outdegree
of a source varies with increasing W (see Appendix C).
Essentially, we observe that there is a continuous ad-
dition of new sources along with connections to new
and old centers. Besides, for a total flow less than 50%,
there is a relatively stable proportion of sources (about
20%) where outdegree varies when W increases. More
precisely, when we zoom into finer scales (i.e., smaller
values of total flows), new sources appear and connect
preferentially to the existing largest centers, while the
existing sources connect to the new centers through
secondary connections. This yields two types of con-
nection only. The first type goes from new sources to
old centers, and the second type from old sources to
new centers. We can summarize this result with the

graph shown in Figure 4 where we divide the centers
into three groups according to their inflow (decreasing
from first Group I to the last Group III). When we ex-
plore smaller flows, we see that the pattern of connec-
tions from sources to centers becomes richer and more
complex, but can nonetheless be described by the sim-
ple iterative process described above: the most impor-
tant link of a source goes to the most important cen-
ters, the second most important link connects to the
second most important centers, and so on. It is in-
teresting to note that even if the organization of flows
follows a simple iterative scheme, it leads to a com-
plex and rich structure, which is not strictly hierarchi-
cal since it mixes different levels of flows consisting of
different orders of magnitude. In addition, the fact that
the most important flows always connect to the same
center naturally leads to the question of efficiency and
congestion in such a system. In this respect, London
appears as a ‘natural’ city as opposed to an ‘artificial’
city for which flows would be constructed according to
an optimized, hierarchical schema [16, 17].

World cities such as London have tended to defy un-
derstanding hitherto because simple hierarchical sub-
division has ignored the fact that their polycentric-
ity subsumes a pattern of nested urban movements.
These movements define a series of subcenters at dif-
ferent levels where complex pattern of flows can be un-
packed using our simple iterative scheme based on the
representation of ever smaller scales defined by smaller
weights. Casual observation suggests that this kind of

[Roth et al., 2011]
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Data as graphs
• Good to detect groups in the data (' clustering)

Modules often overlap with 

properties/functions of nodes

Data mining perspective:

Uncovering communities might 

help to uncover hidden properties 

between nodes

Why looking for modules?

Blogosphere US 2004 Mobile phones BSS Vélo’v in Lyon
[Adamic et al. 2005] [Blondel et al., 2008] [Borgnat et al., 2013]

• Good to code irregular shapes, for compression, denoising,...
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TP : Mesh denoising

1 Degradation model

A mesh can be viewed as a weighted graph G = (V, E), where V = {v(i) | i 2 {1, . . . , M}} denotes
the set of vertices and E = {e(i,j) | (i, j) 2 E} the set of edges, having cardinality of M and P ,
respectively. This graph is weighted in the sense that weights are included on both the edges and
nodes. At each node of index i 2 {1, . . . , M}, we measure a 3D coordinates of the i-th vertex that

is denoted by y(i) = (y
(i)
1 , y

(i)
2 , y

(i)
3 ) 2 R3. This observation results from an original unknown object

x = (x(i))1iM 2 RN (with N = 3M), the measure being degraded by a noise " ⇠ N (0, �2IN ).
An illustration of such a mesh is provided in Figure 1. An edge weight is a value assigned to each
e(i,j), and it is denoted by !i,j 2]0, +1[.
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Figure 1: Example of a graph G.

We propose here to find an estimate bx 2 RN of the original mesh x by solving the following
nonsmooth minimization problem involving only the knowledge of y:

bx = arg min
x2RN

1

2

MX

i=1

kx(i) � y(i)k2
2 + �g(x), (1)

where g 2 �0(RN ) denotes a regularization term and � > 0.

2 Analysis of the data

1. Load x and its associated triangulation mesh:

1

[R. Hamon et al., 2016] [Cours, N. Pustelnik & P.B., ENSL]

p. 4
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Data as graphs and graph signals

• Given a graph G, let’s consider a graph-signal x on the nodes V .
If N = |V |, we have x ∈ RN (could be in CN or multivariate)

USA Temperature Minnesota Roads fMRI Brain Network

Image Grid Color Point Cloud Image Database

p. 5
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Data as graphs and graph signals

• The question: How to apply signal processing on this data / signal ?

Epidemiological network

Undirected graph
[G.Ghoshal (2009), Potterat et al. (2002)]

Road network

1 23

3

1 2

4

28

14

18

Directed graph
[G. Michau, PB et al., 2017]
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Graph Signal Processing

• “The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains”
David I Shuman ; Sunil K. Narang ; Pascal Frossard ; Antonio Ortega ;
Pierre Vandergheynst,
IEEE Signal Processing Mag., May 2013

• “Discrete Signal Processing on Graphs”
Aliaksei Sandryhaila, Jose M. F. Moura
IEEE Transactions on Signal Processing, April 2013

• "Graph signal processing: Overview, challenges, and applications",
A. Ortega, P. Frossard, J. Kovacević, J.M.F. Moura, P. Vandergheynst
Proceedings of the IEEE, 106 (5), 808-828, 2018

• “Cooperative and Graph Signal Processing”
Ed. Petar Djuric and Cédric Richard
Academic Press, 2018

p. 7
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How to define signal/data processing for graph signals?

Some basics in signal/image processing:
• Alternate representation domains of signals are useful:

Fourier transform, DCT, time-frequency, wavelets, chirplets,...
• Among them, the Fourier transform is paramount

Given a times series xn, n = 1, 2, ...,N, let its Discrete Fourier Transform
(DFT) be

∀k ∈ Z x̂k =
N−1∑
n=0

xne−i2πkn/N

(for spectral analysis, filtering, computation, sampling...)

Some basics in graph-signal processing:
• Fourier transform based on the spectral domain of graph
• Develop the analog of classical SP operations by analogy:

denoising, compression, estimation, detection, sampling,...

p. 8
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Two useful matrices describing graphs

Adjacency matrix

A adjacency matrix Aij = 1 if (i, j) ∈ E , else 0
d vector of degrees di =

∑
j∈V Aij

D matrix of degrees D = diag(d)

Laplacian matrix (for undirected and connected G)

L or L laplacian matrix L = D − A or L = I − D−1/2AD−1/2

(λi ) L’s eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λN − 1

(χi ) L’s eigenvectors Lχi = λi χi

Also for L, χ0 = 1 ; χ1 (Fiedler vector) is good to bisect a graph

A =

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 ; L = D − A =

 2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1


p. 9
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A Fundamental analogy for undirected graphs
[Shuman et al., IEEE SP Mag, 2013]

A fundamental analogy
On any graph, the eigenvectors χi of the Laplacian matrix L will be
considered as the Fourier modes, and its eigenvalues λi the associated
(squared) frequencies.

Hence, a Graph Fourier Transform is defined as:

x̂ = χ> x
where χ = (χ0|χ1| . . . |χN−1).

• Two ingredients:
• Fourier modes = Eigenvectors χi (with increasing oscillations)
• Frequencies = The measures of variations of an eigenvector is linked to its

eigenvalue:
||∇χi ||2
||χi ||2

= λi

because: ∀x ∈ RN
∑

e=(i,j)∈E

Aij (xi − xj )
2 = x>Lx is the Dirichlet norm

p. 10
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Fourier modes: examples in 1D and in graphs

LOW FREQUENCY: HIGH FREQUENCY:

p. 11



Introduction to GSP Filtering GSP on Digraph Learning on digraphs Ccl +

Interplay structure - signal for assessing smoothness

fTL1f = 0.14 fTL2f = 1.31 fTL3f = 1.81

Smoothness of Graph Signals Revisited
25

Intro Signal Transforms Problem Spectral Graph Theory Generalized Operators WGFT Conclusion

Incorporation of the Underlying Graph Connectivity 5

For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

Sp(f) :=
1

p

X

i2V

kOifkp
2 =

1

p

X

i2V

2
4X

j2Ni

Wi,j [f(j) � f(i)]
2

3
5

p
2

.

(5)

When p = 1, S1(f) is the total variation of the signal with
respect to the graph. When p = 2, we have

S2(f) =
1

2

X

i2V

X

j2Ni

Wi,j [f(j) � f(i)]
2

=
X

(i,j)2E
Wi,j [f(j) � f(i)]

2
= fTLf . (6)

S2(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm kfkL is defined as

kfkL := kL 1
2 fk2 =

p
fTLf =

p
S2(f).

Note from (6) that the quadratic form S2(f) is equal to zero
if and only if f is constant across all vertices (which is why
kfkL is only a semi-norm), and, more generally, S2(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

�0 = min
f2RN

kfk2=1

{fTLf} , (7)

and �` = min
f2RN

kfk2=1
f?span{u0,...,u`�1}

{fTLf} , ` = 1, 2, . . . , N � 1, (8)

where the eigenvector u` is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u0 is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices

The basis {u`}`=0,1,...,N�1 of graph Laplacian eigenvectors
is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight Wi,j by a factor 1p

didj

. Doing so

leads to the normalized graph Laplacian, which is defined as
L̃ := D� 1

2 LD� 1
2 , or, equivalently,

(L̃f)(i) =
1p
di

X

j2Ni

Wi,j

"
f(i)p

di

� f(j)p
dj

#
.

G1

λ

f̂ λ( )

G2

λ

f̂ λ( )

G3

λ

f̂ λ( )

Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G1, and least smooth with
respect to the intrinsic structure of G3. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL1f = 0.14, fTL2f = 1.31, and fTL3f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of f̂ on G1, and
more energy in the higher frequencies in the graph
spectral plot of f̂ on G3.

The eigenvalues {�̃`}`=0,1,...,N�1 of the normalized graph
Laplacian of a connected graph G satisfy

0 = �̃0 < �̃1  . . .  �̃max  2,

with �̃max = 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V1 and V2 such
that every edge e 2 E connects one vertex in V1 and one vertex
in V2. We denote the normalized graph Laplacian eigenvectors
by {ũ`}`=0,1,...,N�1. As seen in Figure 3(b), the spectrum of
L̃ also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u0, the normalized graph Laplacian
eigenvector ũ0 associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry Pi,j describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its
underlying graph

Similarly, the graph spectral content also depends on the underlying graph

David Shuman Signal Processing on Graphs February 11, 2013 21 / 35

[D. Shuman et al., 2013]
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Filtering

Definition of graph filtering
We define a linear filter H by its function h in the Fourier domain.

It is discrete and defined on the eigenvalues λi → h(λi ).

Ĥ(x) =

 h(λ0) x̂(0)
h(λ1) x̂(1)
h(λ2) x̂(2)

...
h(λN − 1) x̂(N−1)

 = Ĥ x̂ with Ĥ =

 h(λ0) 0 0 ... 0
0 h(λ1) 0 ... 0
0 0 h(λ2) ... 0
... ... ... ... ...
0 0 0 ... h(λN − 1)



In the node-space, the filtered signal H(x) can be written:
H(x) = χ Ĥ χ> x

In term of calculus of operator on a graph, this reads
H(x) = h(L) · x

p. 13
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Filtering – Illustration
• Input graph signal: a noisy version of a signal, with additive Gaussian

noise x -0.4
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[N. Tremblay, P. Gonçalves, P.B., 2018]
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Filtering – Example for Recovery
• Denoising of a graph signal, when observing y = x0 + ε, formulated as

an inverse problem:

x∗ = arg min
x
||x − y ||22 + γx>Lx

because remember that : x>Lx =
∑

e=(i,j)∈E

Aij (xi − xj )
2

• Graph-Fourier coefficients: x̂ = χ> x

• Solution: x̂∗(i) =
1

1 + γλi
ŷ(i) (a “1st-order low pass” filter)

EPFL – Signal Processing Laboratory (LTS2)
http://lts2.epfl.ch

Simple Motivating Examples
! Tikhonov regularization for denoising:

5

argminf

�
||f � y||22 + �fT Lf
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[P. Vandergheynst, EPFL, 2013]
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Alternative versions of graph signal processing and filters

• Alternative definition of GSP:
• Any Reference (or Shift) operator R can be used instead of L
• Discrete Signal Processing on Graphs: R = A

• Alternative definition of graph filters:
• An operator H that commutes with the Reference operator (HR = RH) can

be called a filter
• Intuition: they share the same spectral eigenspace,

hence the filter will act independently at each frequency

• Parametric formulation: filters can be written as:

h(R) =
K∑

k=0

hk Rk

(leads to ARMA filters; to distributed implementations;...)

p. 16
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What about directed graphs ?
Thesis of Harry Sevi, 2018; joint work G. Rilling (CEA LIST)

Graph cyclic undirected directed
1 2

34

1

3
4

2

Fourier Modes eiωt χ ?

Operator L ?

Frequency ω λ ?

Variation 〈χ,Lχ〉 ?

p. 17
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Measure of Variations

Undirected: Directed:

D(f ) =
1
2

∑
i,j

aij |fi − fj |2

= 〈f ,Lf 〉

D2
π,P(f ) =

1
2

∑
i,j

πipij |fi − fj |2.

= 〈f ,Ldir f 〉.
with with

L = D− A. Ldir = Π− ΠP + P>Π

2
[Chung, 2005]

• Directed case
• use of P = D−1A the random walk operator
• and its associated stationary distribution π,

with the diagonal matrix Π associated to it

• Undirected case : Π ∝ D⇒ Ldir ∝ L.

p. 18
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Fourier modes on directed graphs
Reference operator: the Random walk operator
• Random walk Xn : position X at time n.
• Pij = P(Xn = j|Xn−1 = i) is its transition probability

P =


0 1 0 0
1
2 0 1

2 0
0 0 0 1
0 1 0 0

 = D−1A

1

3
4

2

Proposed Fourier Modes:
• Eigenvectors Pξk = θkξk Ξ = [ξ1, . . . , ξN ] the basis
• Fourier representation of s

s =
∑

k

ŝkξk = Ξŝ.

where ŝ = [ŝ1, . . . , ŝN ]> are the Fourier coefficients
• Digraph Fourier Transform :

ŝ = Ξ−1s.

• Beware : complex eigenvalues : θ = α + iβ, |θ| ≤ 1.
p. 19



Introduction to GSP Filtering GSP on Digraph Learning on digraphs Ccl +

Frequency analysis of modes of P

Fourier Modes:

[ξ1, . . . , ξN ]

Variations:

D2
π,P(f ) = 〈f ,Ldir f 〉

Frequency analysis:

D2
π,P(ξ)

〈ξ,Πξ〉 = 1 − Re(θ)

• Let’s define the frequency of ξ from its complex eigenvalue θ :

ω = 1−Re(θ), ω ∈ [0, 2]

["Analyse fréquentielle et filtrage sur graphes dirigés", Sevi et al., GRETSI, 2017]

p. 20
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Summary of the proposed framework for directed graphs

Graphe cyclic undirected directed

1 2

34

1

3
4

2

Fourier Mode eiωt χ ξ

Operator L P

Frequency ω λ ω = 1−Re(θ)

Variation 〈χ,Lχ〉 〈ξ,Ldirξ〉

p. 21
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Comparison to other GFT for directed graphs

[Sandryhaila et al., 2014] DSP for graphs :

• (+) A straightforward generalisation of usual DSP
• (−) Ad-hoc definition of frequency, based on TV 1(x) = ||x − Anormx ||1
• (−) Does not generalize GSP as used on undirected graphs

[Sardellitti et al., 2017, Shafipour et al., 2017]:

Orthonormal Fourier basis related to original measures of variations

• (+) The measures of variations are interesting
• (−) The basis is found by some non convex optimisation problem
• (−) The Fourier modes are not eigenmodes of some operator
• (−) Do not generalize classical GSP on undirected graphs

p. 22
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Some learning tasks with GFT on digraphs
Two case studies:
• Semi-supervised learning:

Estimation of missing data (signals) as done in [Zhou et al., ICML 2005]
• Parametric modelling of signals:

e.g., for compression as done in [Sandryhaila et al., 2014]

Applications on the political blog data of US 2004 [Adamic et al., 2004]

• Node : A political blog.
• Edge : A hyper-link from on blog to

another (directed)
• Signal : The political side (democrat

or republican)

p. 23
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Semi-supervised learning and GSP

• Setting: some known nodes with labels ("-1", "+1"), and others with
unknown labels ("0")

• The semi-supervised learning problem is to estimate labels for the
unknown ones

• Solution formulated as a minimisation problem

f ∗ = sign

(
argmin
f∈`2(V )

{
Termreg(f ) + Termdata(f )

})

Regularization Term

Directed:
〈f ,Ldir f 〉

Undirected:
〈f ,Lf 〉

DSP-G:
‖f − Anormf‖2

p. 24
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Example of SSL on the blog’s data
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Parametric modelling

Problem formulation
• Model a graph signal f , e.g., for compression or inpainting
• Assumption: a partial observation y of f

Objective
• Estimate a parametric modeling of f
• Recover the missing data points from y
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Solution of the problem

• We observe y = εf , where the εk = 1 if known, else 0
• Decide upon a reference operator, noted R, first R = P or A
• Model the signal thanks to a parametric graph filter H:

H(θ) =
K∑

k=0

θk Rk , θk ∈ R. (1)

• Parameter estimation

θ̂ = argmin
θ={θk}K

k=0∈RK+1
E
[
‖f −

K∑
k=0

θk Rk y‖2
µ

]
, (2)

• (that has well-known solution)
• Signal model :

f̂ (θ) =
K∑

k=0

θ̂k Rk y
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Experimental results (1)
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Alternative Reference Operator (1)

Other Reference operators R could be used :

• P∗, associated to the time reversed random walk: P∗ = Π−1P>Π.

• P̄, the additive reversibilization of P: P̄ =
P + P∗

2
.

Prop.: P,P∗, P̄ lead all to DiGFT with frequency related to Variations
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Experimental results (2)
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Alternative Reference Operator (2)

• P∗, associated to the time reversed random walk: P∗ = Π−1P>Π.

• P̄, the additive reversibilization of P: P̄ =
P + P∗

2
.

Generalization: convex combination between P and P∗

Pα = (1− α)P + αP∗

for α ∈ [0, 1].

Prop.: Pα leads all to DiGFT with frequency related to Variations
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Experimental results (3)
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Designing Convex Combination of Graph Filters
joint work with F. Hua, J. Chen, H. Wang, P. Gonçalves, C. Richard

• The convex combination of operators does not lead to convex
optimization problem:

• Let us consider S = αS1 + (1− α)S2
• A filter H =

∑L−1
`=0 h`S`

• Observations of input x & output y of this filter:

y = Hx

• The estimation of h and α by minimising the cost:

J(h, α) =

∥∥∥∥∥∥ y−
L−1∑
`=0

h`(αS1 + (1− α)S2)
`x

∥∥∥∥∥∥
2

is non convex w.r.t. h and α!
• This would still not be the case by adding two filters:

•

J′(h, α) =

∥∥∥∥∥∥ y− [α(

L−1∑
`=0

h1,`S`1) + (1− α)
L−1∑
`=0

h2,`S`2]x

∥∥∥∥∥∥
2

p. 33
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Designing Convex Combination of Graph Filters
joint work with F. Hua, J. Chen, H. Wang, P. Gonçalves, C. Richard

• Solution: use the approach of [“Simple MKL”, Rakotomamonjy et al.,
JLMR 2008]

• The combination is now of different filters:

H =
L−1∑
`=0

h1,`S`1 + h2,`S`2

• The combination is now regularised and controlled by minimizing a
balance between the norms of the vectors of filter coefficients:
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J(↵) =

8
<
:

min
h1,h22IRL

F (↵, h1, h2) = 1
2

⇣
1
↵kh1k2 + 1

1�↵kh2k2
⌘

+ 1
2µ

PN
k=1 e2

k

subject to ek = yk � h>
1 m1,k � h>

2 m2,k, k 2 {1, . . . , N}
. (19)

we propose to consider the following optimization problem
inherited from the multi-kernel learning literature [17]–[19]:

h⇤
1, h

⇤
2, ↵

⇤ = arg min
h1,h2,↵

1

2

✓kh1k2

↵
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kh2k2
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◆
+
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2µ
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k=1

e2
k

subject to :

ek = yk � h>
1 m1,k � h>

2 m2,k, k 2 {1, . . . , N}
0 < ↵ < 1,

(17)

where ↵ allows to adjust the balance between h1 and h2 via
their norms. Indeed, the solution of problem (17) tends to that
of problem (10) with h2 (resp., h1) as ↵ tends to 0 (resp., 1).
Note that function khk2/↵, called the perspective function, is
jointly convex w.r.t. h and ↵ [20]. It follows that problem (17)
is convex w.r.t. h1, h2 and ↵.

In order to solve problem (17), we consider the following
constrained optimization problem:

min
↵

J(↵) subject to 0 < ↵ < 1 (18)

where J(↵) is given by (19). Problem (18) is an optimization
problem that is jointly convex w.r.t. ↵, h1, h2. It can be solved
with a two-step procedure w.r.t h1, h2 and ↵ successively.

A. Solving w.r.t. h1, h2

The Lagrangian of problem (19) can be written as:

L0 =
1

2
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e2
k

�
NX

k=1

�k

⇣
ek � yk + h>

1 m1,k + h>
2 m2,k

⌘
.

(20)

The optimality conditions for L0 w.r.t. the primal variables are:
8
><
>:
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PN
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h⇤
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⇤
km2,k
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Note that coefficients h⇤
1 and h⇤

2 are coupled through ↵ in the
dual domain. Substituting (21) into (20) yields:

�⇤ = arg max
�2IRN

�1

2
�>(R↵ + µI)� + �>y

with R↵ = ↵M1M
>
1 + (1 � ↵)M2M

>
2 .

(22)

Problem (22) is a QP problem which can be efficiently solved.
Given �⇤, coefficients h⇤

1 and h⇤
2 can be computed with (21).

B. Solving w.r.t. ↵

First, note that function:

fp,q(↵) =
p

↵
+

q

1 � ↵
with p, q � 0 (23)

is convex over 0 < ↵ < 1. It can be checked that its optimum
is given by:

↵⇤ = (1 +
p

q/p)�1. (24)

Then, considering (19), and substituting h⇤
1, h⇤

2 from (21)
in (23), the optimum value ↵⇤

i at iteration i is provided by:
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(25)

where ↵⇤
i�1 is the optimum value obtained from the previous

iteration. The algorithm can be stopped based on Karush-
Kuhn-Tucker conditions, or the duality gap equals to zero.
In practice, a numerical error tolerance can be specified by
the user. The whole optimization procedure is summarized in
Algorithm 1.

Algorithm 1
Input: x, y, S1, S2, L.
Initialize: randomly choose 0 < ↵⇤

�1 < 1, compute M1, M2.
Repeat:

1: solve (22) with a generic QP solver to get �⇤

compute h⇤
1, h

⇤
2 from (21),

2: update ↵⇤
i by using (25).

Until: stopping condition is satisfied.
Output: h⇤

1, h
⇤
2, ↵

⇤.

IV. NUMERICAL RESULTS

We shall now present a performance comparison of our
approach and other methods reported in the literature. We
tested graph filter models (4), (8), (9) and (17) for modelling
real-world data. We considered the Molène temperature data
set of hourly weather observations collected during January
2014 in Brittany (France) [21] for undirected graphs, and the
data set of the political blogs of the 2004 US presidential
election [22] for directed graphs. Operators S1 and S2 that
were used with models (8), (9), (17) are given in Table I, where
W norm denotes the normalized adjacency matrix W norm =
W /|�max{W }|. MATLAB function quadprog was used to
solve the QP problem (22). The stopping criteria was set as
the difference between two successive estimates of ↵ smaller
than 10�3. The graph filter degree was set to L = 10.
Undirected graph: The Molène data set consists of 32
vertices, with 744 observations each. The undirected graph was
generated by using GSPBOX [23]. Each vertex was connected
to its 6 nearest neighbors. The modeling problem was to learn

where m>1,k is the k -th row of the matrix M1 , itself is obtained by
concatenation as [M1]·,` = S`−1

1 x; idem for m>2,k
p. 34



Introduction to GSP Filtering GSP on Digraph Learning on digraphs Ccl +

Designing Convex Combination of Graph Filters
joint work with F. Hua, J. Chen, H. Wang, P. Gonçalves, C. Richard

• The problem is now an optimization problem that is jointly convex w.r.t.
h1, h2 and α

• Solution obtained with a two-step procedure, w.r.t. h1, h2 and then α
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where ↵⇤
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iteration. The algorithm can be stopped based on Karush-
Kuhn-Tucker conditions, or the duality gap equals to zero.
In practice, a numerical error tolerance can be specified by
the user. The whole optimization procedure is summarized in
Algorithm 1.
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�1 < 1, compute M1, M2.
Repeat:
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IV. NUMERICAL RESULTS

We shall now present a performance comparison of our
approach and other methods reported in the literature. We
tested graph filter models (4), (8), (9) and (17) for modelling
real-world data. We considered the Molène temperature data
set of hourly weather observations collected during January
2014 in Brittany (France) [21] for undirected graphs, and the
data set of the political blogs of the 2004 US presidential
election [22] for directed graphs. Operators S1 and S2 that
were used with models (8), (9), (17) are given in Table I, where
W norm denotes the normalized adjacency matrix W norm =
W /|�max{W }|. MATLAB function quadprog was used to
solve the QP problem (22). The stopping criteria was set as
the difference between two successive estimates of ↵ smaller
than 10�3. The graph filter degree was set to L = 10.
Undirected graph: The Molène data set consists of 32
vertices, with 744 observations each. The undirected graph was
generated by using GSPBOX [23]. Each vertex was connected
to its 6 nearest neighbors. The modeling problem was to learn
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k=1

�k

⇣
ek � yk + h>

1 m1,k + h>
2 m2,k

⌘
.

(20)

The optimality conditions for L0 w.r.t. the primal variables are:
8
><
>:

h⇤
1 = ↵

PN
k=1 �

⇤
km1,k

h⇤
2 = (1 � ↵)

PN
k=1 �

⇤
km2,k

e⇤k = µ�⇤
k

. (21)

Note that coefficients h⇤
1 and h⇤

2 are coupled through ↵ in the
dual domain. Substituting (21) into (20) yields:

�⇤ = arg max
�2IRN

�1

2
�>(R↵ + µI)� + �>y

with R↵ = ↵M1M
>
1 + (1 � ↵)M2M

>
2 .

(22)

Problem (22) is a QP problem which can be efficiently solved.
Given �⇤, coefficients h⇤

1 and h⇤
2 can be computed with (21).

B. Solving w.r.t. ↵

First, note that function:

fp,q(↵) =
p

↵
+

q

1 � ↵
with p, q � 0 (23)

is convex over 0 < ↵ < 1. It can be checked that its optimum
is given by:

↵⇤ = (1 +
p

q/p)�1. (24)

Then, considering (19), and substituting h⇤
1, h⇤

2 from (21)
in (23), the optimum value ↵⇤

i at iteration i is provided by:

↵⇤
i =

 
1 +

1 � ↵⇤
i�1

↵⇤
i�1

s
�⇤>M2M

>
2 �

⇤

�⇤>M1M
>
1 �

⇤

!�1

(25)

where ↵⇤
i�1 is the optimum value obtained from the previous

iteration. The algorithm can be stopped based on Karush-
Kuhn-Tucker conditions, or the duality gap equals to zero.
In practice, a numerical error tolerance can be specified by
the user. The whole optimization procedure is summarized in
Algorithm 1.

Algorithm 1
Input: x, y, S1, S2, L.
Initialize: randomly choose 0 < ↵⇤

�1 < 1, compute M1, M2.
Repeat:

1: solve (22) with a generic QP solver to get �⇤

compute h⇤
1, h

⇤
2 from (21),

2: update ↵⇤
i by using (25).

Until: stopping condition is satisfied.
Output: h⇤

1, h
⇤
2, ↵

⇤.

IV. NUMERICAL RESULTS

We shall now present a performance comparison of our
approach and other methods reported in the literature. We
tested graph filter models (4), (8), (9) and (17) for modelling
real-world data. We considered the Molène temperature data
set of hourly weather observations collected during January
2014 in Brittany (France) [21] for undirected graphs, and the
data set of the political blogs of the 2004 US presidential
election [22] for directed graphs. Operators S1 and S2 that
were used with models (8), (9), (17) are given in Table I, where
W norm denotes the normalized adjacency matrix W norm =
W /|�max{W }|. MATLAB function quadprog was used to
solve the QP problem (22). The stopping criteria was set as
the difference between two successive estimates of ↵ smaller
than 10�3. The graph filter degree was set to L = 10.
Undirected graph: The Molène data set consists of 32
vertices, with 744 observations each. The undirected graph was
generated by using GSPBOX [23]. Each vertex was connected
to its 6 nearest neighbors. The modeling problem was to learn

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MARCH 2019 3

J(↵) =

8
<
:

min
h1,h22IRL
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⇣
1
↵kh1k2 + 1
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⌘

+ 1
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k=1 e2

k
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2 m2,k, k 2 {1, . . . , N}
. (19)

we propose to consider the following optimization problem
inherited from the multi-kernel learning literature [17]–[19]:
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h1,h2,↵

1

2

✓kh1k2

↵
+

kh2k2

1 � ↵

◆
+

1

2µ

NX

k=1

e2
k

subject to :

ek = yk � h>
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0 < ↵ < 1,

(17)

where ↵ allows to adjust the balance between h1 and h2 via
their norms. Indeed, the solution of problem (17) tends to that
of problem (10) with h2 (resp., h1) as ↵ tends to 0 (resp., 1).
Note that function khk2/↵, called the perspective function, is
jointly convex w.r.t. h and ↵ [20]. It follows that problem (17)
is convex w.r.t. h1, h2 and ↵.

In order to solve problem (17), we consider the following
constrained optimization problem:

min
↵

J(↵) subject to 0 < ↵ < 1 (18)

where J(↵) is given by (19). Problem (18) is an optimization
problem that is jointly convex w.r.t. ↵, h1, h2. It can be solved
with a two-step procedure w.r.t h1, h2 and ↵ successively.

A. Solving w.r.t. h1, h2

The Lagrangian of problem (19) can be written as:

L0 =
1
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(20)

The optimality conditions for L0 w.r.t. the primal variables are:
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km1,k

h⇤
2 = (1 � ↵)
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⇤
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e⇤k = µ�⇤
k

. (21)

Note that coefficients h⇤
1 and h⇤

2 are coupled through ↵ in the
dual domain. Substituting (21) into (20) yields:

�⇤ = arg max
�2IRN

�1

2
�>(R↵ + µI)� + �>y

with R↵ = ↵M1M
>
1 + (1 � ↵)M2M

>
2 .

(22)

Problem (22) is a QP problem which can be efficiently solved.
Given �⇤, coefficients h⇤

1 and h⇤
2 can be computed with (21).

B. Solving w.r.t. ↵

First, note that function:

fp,q(↵) =
p

↵
+

q

1 � ↵
with p, q � 0 (23)

is convex over 0 < ↵ < 1. It can be checked that its optimum
is given by:

↵⇤ = (1 +
p

q/p)�1. (24)

Then, considering (19), and substituting h⇤
1, h⇤

2 from (21)
in (23), the optimum value ↵⇤

i at iteration i is provided by:

↵⇤
i =

 
1 +

1 � ↵⇤
i�1

↵⇤
i�1

s
�⇤>M2M

>
2 �

⇤

�⇤>M1M
>
1 �

⇤

!�1

(25)

where ↵⇤
i�1 is the optimum value obtained from the previous

iteration. The algorithm can be stopped based on Karush-
Kuhn-Tucker conditions, or the duality gap equals to zero.
In practice, a numerical error tolerance can be specified by
the user. The whole optimization procedure is summarized in
Algorithm 1.

Algorithm 1
Input: x, y, S1, S2, L.
Initialize: randomly choose 0 < ↵⇤

�1 < 1, compute M1, M2.
Repeat:

1: solve (22) with a generic QP solver to get �⇤

compute h⇤
1, h

⇤
2 from (21),

2: update ↵⇤
i by using (25).

Until: stopping condition is satisfied.
Output: h⇤

1, h
⇤
2, ↵

⇤.

IV. NUMERICAL RESULTS

We shall now present a performance comparison of our
approach and other methods reported in the literature. We
tested graph filter models (4), (8), (9) and (17) for modelling
real-world data. We considered the Molène temperature data
set of hourly weather observations collected during January
2014 in Brittany (France) [21] for undirected graphs, and the
data set of the political blogs of the 2004 US presidential
election [22] for directed graphs. Operators S1 and S2 that
were used with models (8), (9), (17) are given in Table I, where
W norm denotes the normalized adjacency matrix W norm =
W /|�max{W }|. MATLAB function quadprog was used to
solve the QP problem (22). The stopping criteria was set as
the difference between two successive estimates of ↵ smaller
than 10�3. The graph filter degree was set to L = 10.
Undirected graph: The Molène data set consists of 32
vertices, with 744 observations each. The undirected graph was
generated by using GSPBOX [23]. Each vertex was connected
to its 6 nearest neighbors. The modeling problem was to learn
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Designing Convex Combination of Graph Filters
Application: Signal recovery on the political blogs

• Combined operators: S1 = P and S1 = P∗

• Accuracy result:
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graph filters Ĥ based on models (4), (8), (9) and (17). Here y
is the original graph signals, and x is the random sampling of
y. We use p to denote the proportion of known signals. The
reconstruction error is defined as:

error =
kĤx � yk2

kyk2
. (26)

Figures 1 and 2 depict the reconstruction error for different
proportions of known temperatures within Case 1 and Case
2, respectively. In Case 1, we observe in Figure 1 that the
combination models (8) and (9) performed better than filters
based on single matrix. In Case 2, the combination models (8)
and (9) performed as well as the filter based on Lnorm, which
means that the optimal ↵ in that case was close to 0. However,
it can be observed that the proposed algorithm achieved the
best performance in both cases.
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Fig. 1: Reconstruction errors for different proportions of
known temperatures: Case 1.
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Fig. 2: Reconstruction errors for different proportions of
known temperatures: Case 2.

TABLE I: Shift operators used in the experiments.

Graph type S1 S2

Undirected, Case 1 W norm Lnorm

Undirected, Case 2 I � W norm Lnorm

Directed P P ⇤

Directed graph: The political blogs data set consists of 1224
blogs where each blog is either conservative, and labeled
as +1, or liberal, and labeled as �1. This data set can
be represented by a directed graph where vertices represent
blogs, and a directed edge is considered to be present from
vertex i to vertex j if there is a hyperlink from blog i
to j. We consider a strongly connected part of this graph
composed of 793 blogs, in which 351 are liberal and the
remaining conservative. After learning the filter model Ĥ , the
reconstructed labels resulting from a random sampling x were
given by ŷ = sgn(Ĥx). Figure 3 reports the reconstruction
accuracy for different proportions of known labels. The results
are based on 100 realizations of random sampling for each
proportion. Observe that the combination models performed
better than the filters based on W norm or random walk P ,
and the proposed model (17) performed slightly better than
the two other combinations. In terms of computational cost,
we compared the running times for designing the different
combination models on MATLAB R2018a with Intel Core i5-
8500 @ 3.00GHz and 8G RAM. Table II reports the averaged
CPU time for a single learning.
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Fig. 3: Reconstruction accuracy for different proportions of
known labels.

TABLE II: Averaged CPU time for different models.

Model CPU time (sec.)

model (8) 2.6763

model (9) 5.6016

model (17) 0.7562

V. CONCLUSION

In this work, we investigated different models for com-
bining graph filters. In particular, we introduced a convex
combination of graph filters. We formulated the corresponding
modeling problem as a convex optimization problem and
derived a two-step optimization procedure in the dual domain.
Numerical results on real-world data, for undirected and
directed graphs, demonstrated the efficiency and robustness
of the proposed method compared with models and methods
reported in the literature. These experiments also showed that
designing combinations of graph filters with the proposed
algorithm is significantly more computationally efficient.
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Perspectives for GSP on directed graphs

• A full framework to generalize Laplacian-based approaches to digraphs,

- using random walk (or generalisations Pα) as Reference operator
- and Ldir to measure variations and define frequency

• Re-interpretation of SSL ; Improvement of parametric modelling

• More developments:

Spectral wavelets and diffusion wavelets with P on digraphs
see [H. Sevi, G. Rilling, P.B., arXiv:1811.11636]

• Recent interests in combining that and more machine learning
cf. ACADEMICS project (SB IDEXLYON)

• Contact and more information:

http://perso.ens-lyon.fr/pierre.borgnat
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On the directed cyclic graph

=

Classic DSP Directed cycle graph

Eigenvectors eiωt , e−iωt = θt , θ̄t

Eigenvalues eiω, e−iω = θ, θ̄

Frequencies ω,−ω 6= θ, θ̄ = (1− ω)± iβ
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On a directed torus graph

Directed torus graph Eigenvalues of P.
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On a directed torus graph
We show 2 eigenmodes of same frequency and different (non conjugate)
imaginary parts
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Further numerical explorations of graph signal modelling

• Results depends on the sampling law for ε (where t = εf )

• A limit of choosing P: it requires a strongly connected graph...
• 1) use connected components,
• or 2) modify the graph

• add a small rank-one perturbation (Cons: non-sparse)
• construct the “google” matrix:

complete dangling nodes (i.e., nodes with dout = 0)
and then add a probability of jumping anywhere
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Experimental results (4)
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