Introduction to GSP
00000000000

p. 1

Filtering GSP on Digraph Learning on digraphs Ccl
0000 000000 000000000000 00 [e]

Graph Signal Processing on directed graph
for modelling and learning

Pierre Borgnat

DR CNRS - Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, France
Equipe Sisyphe (Signaux, Systemes et Physique)
et IXXI (Institut Rhénalpin des Systémes Complexes)

Montpellier, 05/2019

— " — ERSITE 0

ENS de LYON IXXI

|
|
e

ENS DE LYON



Introduction to GSP
©0000000000

Scope of the work

o Extension of Graph Signal Processing to directed graphs
e The motivation: tasks of signal modelling and/or learning on digraphs

¢ Joint work with Harry Sevi (PhD defended in Novembre 2018)
and Gabriel Rilling (CEA List)

o Other collaborators (thanked also for some of the figures of the talk) :
Nicolas Tremblay, Sophie Achard, Paulo Gongalves, Cédric Richard, Fei Hua

e Work supported by:

e ANR-14-CE27-0001 GRAPHSIP grant
e ACADEMICS grant in the Scientific Breakthrough Program IDEXLYON, Programme
Investissements d?Avenir ANR-16-IDEX-0005
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Data as graphs
e Agraph G = (V, E), setof nodes in V and edges in E

V = {blue, green, orange, red} and E = {(b, 9), (9, 0),(0,b), (b, r)}

e Good to represent relations (€ E) between entities (€ V)

Stratford

Torthern Stations

L) urora
Gate

Museums

[Roth et al., 2011]
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Data as graphs
e Good to detect groups in the data (~ clustering)

e 'ﬁ 020,220,

g

co ! s .'.‘/rl
Blogosphere US 2004 Mobile phones BSS Vélo'v in Lyon
[Adamic et al. 2005] [Blondel et al., 2008] [Borgnat et al., 2013]

e Good to code irregular shapes, for compression, denoising,...

?
| 28 :
1 o | =
B 4 20 Noisy mesh y Original mesh T
[R. Hamon et al., 2016] [Cours, N. Pustelnik & P.B., ENSL]
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Data as graphs and graph signals

e Given a graph G, let’'s consider a graph-signal x on the nodes V.
If N = |V|, we have x € R" (could be in C or multivariate)

82417

Image Grid Color Point Cloud Image Database
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Data as graphs and graph signals

e The question: How to apply signal processing on this data / signal ?

Epidemiological network

Road network

Directed graph
[G. Michau, PB et al., 2017]

Undirected graph
[G.Ghoshal (2009), Potterat et al. (2002)]
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Graph Signal Processing

“The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains”
David | Shuman ; Sunil K. Narang ; Pascal Frossard ; Antonio Ortega ;
Pierre Vandergheynst,

IEEE Signal Processing Mag., May 2013

“Discrete Signal Processing on Graphs”
Aliaksei Sandryhaila, Jose M. F. Moura
IEEE Transactions on Signal Processing, April 2013

"Graph signal processing: Overview, challenges, and applications",
A. Ortega, P. Frossard, J. Kovacevi¢, J.M.F. Moura, P. Vandergheynst
Proceedings of the IEEE, 106 (5), 808-828, 2018

“Cooperative and Graph Signal Processing”
Ed. Petar Djuric and Cédric Richard
Academic Press, 2018
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How to define signal/data processing for graph signals?

Some basics in signal/image processing:

¢ Alternate representation domains of signals are useful:
Fourier transform, DCT, time-frequency, wavelets, chirplets,...

e Among them, the Fourier transform is paramount
Given a times series x,, n=1,2, ..., N, let its Discrete Fourier Transform
(DFT) be

N—1
kT fu= 3 xpe TN
n=0

(for spectral analysis, filtering, computation, sampling...)

Some basics in graph-signal processing:
e Fourier transform based on the spectral domain of graph

¢ Develop the analog of classical SP operations by analogy:
denoising, compression, estimation, detection, sampling,...
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Two useful matrices describing graphs

Adjacency matrix

A | adjacency matrix | A; =11if (i,j) € E, else 0
d | vector of degrees a =2 ey Aj
D | matrix of degrees D = diag(d)

Ccl

Laplacian matrix (for undirected and connected G)

Lor.% | laplacian matrix | L=D— Aor ¥ =1— D" "/2AD~"/2
\) Ls eigenvalues O=X <M< <. .<AI_;
(x1) L's eigenvectors Lxi = XNixi

Also for L, xo = 1; x1 (Fiedler vector) is good to bisect a graph

—_——_ O =

2 -1 -1 0
g -1 3 =1
]'L—D_A—[—1 -1 2 0

0 -1 0 1

0O = =
[eN=ib o)
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A Fundamental analogy for undirected graphs
[Shuman et al., IEEE SP Mag, 2013]

A fundamental analogy

On any graph, the eigenvectors y; of the Laplacian matrix L will be
considered as the Fourier modes, and its eigenvalues \; the associated
(squared) frequencies.

Hence, a Graph Fourier Transform is defined as:

where x = (xolxi|- - [xn=1)-

e Two ingredients:

o Fourier modes = Eigenvectors x; (with increasing oscillations)
¢ Frequencies = The measures of variations of an eigenvector is linked to its
eigenvalue:

IVxill®?
- 1
[1xil[?
because: vx € RN Z Aj(x; — x;)?> = x " Lx is the Dirichlet norm
e=(i,j))€E
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Fourier modes: examples in 1D and in graphs
LOW FREQUENCY: HIGH FREQUENCY:

05 0.5
05 -0.5

A Wt\‘f §§~ !
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Interplay structure - signal for assessing smoothness

g1 Go Us

I L] . I g I L]

1 1 1

08 08 08
AA, 06 AA, 06 AA 06
F(2)., F(2)., (2.,

02 02 02 ‘

L AR R SR W ol

0051 152253354455 0051152253 354455 ousw‘52253354455

Q a

f7L.£=0.14 f'Lof =1.31 f'Lsf =1.81

[D. Shuman et al., 2013]
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GSP on Digraph
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Filtering

Definition of graph filtering

Learning on digraphs
000000000000 00

Ccl

We define a linear filter H by its function h in the Fourier domain.
It is discrete and defined on the eigenvalues A\; — h(\;).

EAO;XEO; h(éo)h(g:

7(x) >\ X 1 i~ . -~

H(x) = (,\;)x(z) = H % with H = 0
h(An — 1)X(N—1) o o

In the node-space, the filtered signal #(x) can be written:
H(x) = xHx" x
In term of calculus of operator on a graph, this reads
H(x) = h(L) - x

SUhOW 1)
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Filtering — lllustration
¢ Input graph signal: a noisy version of a signal, with additive Gaussian

0.4 1
0.2 N_O 5 V —L

a0 —L
0 0 B, n
0 05 1 —Ly

noise X X M Amaz
e Denoising by filtering
noisy x denoised x4

X4 = Uh(A)UTx
node space

1 = e 1

graph Fourier o5 Py . Y
space = = A

0 > 0

[N. Tremblay, P. Gongalves, P.B., 2018]
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Filtering — Example for Recovery

¢ Denoising of a graph signal, when observing y = xo + ¢, formulated as
an inverse problem:

X. = argmin||x — y||5 +vx Lx
X
because remember that: x 'Lx = > Aj(x — x)?

e=(i,j)€eE
o Graph-Fourier coefficientS' x=x"x

e Solution: X, (i) = T ——J(i) (a “1st-order low pass” filter)

Original Denoised

[P. Vandergheynst, EPFL, 2013]
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Alternative versions of graph signal processing and filters

e Alternative definition of GSP:

o Any Reference (or Shift) operator R can be used instead of L
o Discrete Signal Processing on Graphs: R = A

o Alternative definition of graph filters:

e An operator H that commutes with the Reference operator (HR = RH) can
be called a filter

e Intuition: they share the same spectral eigenspace,
hence the filter will act independently at each frequency

o Parametric formulation: filters can be written as:
K
h(R) = hR"
k=0
(leads to ARMA filters; to distributed implementations;...)
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What about directed graphs ?

Thesis of Harry Sevi, 2018; joint work G. Rilling (CEA LIST)

Ccl

Graph cyclic undirected directed
Fourier Modes et X ?
Operator L ?
Frequency w A ?
Variation (x,Lx) ?
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Measure of Variations

Undirected: Directed:
D(f) = 3 3 ajlt— ff° D2p(f) = 3 S mipilt 1
ij ij
= <f7Lf> = <f7 Ld/,f>‘
with with
L=D-A. Ld,-,:H—HFUripTrI

2
[Chung, 2005]

e Directed case

e use of P = DA the random walk operator
e and its associated stationary distribution 7,
with the diagonal matrix IT associated to it

e Undirected case : IT « D = Ly o L.
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Fourier modes on directed graphs
Reference operator: the Random walk operator
e Random walk X, : position X at time n.
e Pj =P(X, = j|Xo—1 = i) is its transition probability

1 2

=D 'A

—_— 00 =
o On= O

[eNelVENe]
o = O O

Proposed Fourier Modes:
o Eigenvectors P&, = 0k&k =
e Fourier representation of s

SZZéks

k

where § = [81,...,8y] " are the Fourier coefficients
o Digraph Fourier Transform :

[&1,. .., &n] the basis

[I]

s

s=2s
e Beware : complex eigenvalues : 6 = o + i3, |6] < 1.
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Frequency analysis of modes of P

Fourier Modes:
[51 PRI 7£N]

Variations:

D2 p(f) = (f,Laif)

Frequency analysis:

D32 p(§)
(€,11¢)

=1 — Re(9)

o Let’s define the frequency of £ from its complex eigenvalue 0 :

w=1-Re(d), wel0,2]

["Analyse fréquentielle et filtrage sur graphes dirigés", Sevi et al., GRETSI, 2017]
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Summary of the proposed framework for directed graphs

Graphe cyclic undirected directed
Fourier Mode et X 13
Operator L P
Frequency w A w=1—Re(d)
Variation (x,Lx) (&, Lair€)
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Comparison to other GFT for directed graphs

[Sandryhaila et al., 2014] DSP for graphs :

¢ (+) A straightforward generalisation of usual DSP
e (—) Ad-hoc definition of frequency, based on TV'(x) = ||x — AnormX||1
e (—) Does not generalize GSP as used on undirected graphs

[Sardellitti et al., 2017, Shafipour et al., 2017]:
Orthonormal Fourier basis related to original measures of variations
e (+) The measures of variations are interesting

The basis is found by some non convex optimisation problem

=)
e (—) The Fourier modes are not eigenmodes of some operator
* (-)

Do not generalize classical GSP on undirected graphs
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Some learning tasks with GFT on digraphs
Two case studies:
e Semi-supervised learning:
Estimation of missing data (signals) as done in [Zhou et al., ICML 2005]
o Parametric modelling of signals:
e.g., for compression as done in [Sandryhaila et al., 2014]

Applications on the political blog data of US 2004 [Adamic et al., 2004]

e Node : A political blog.

3 e Edge : A hyper-link from on blog to
52 another (directed)
2" e Signal : The political side (democrat

or republican)
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Semi-supervised learning and GSP

o Setting: some known nodes with labels ("-1", "+1"), and others with
unknown labels ("0")

e The semi-supervised learning problem is to estimate labels for the
unknown ones

e Solution formulated as a minimisation problem

f* = sign (argmin{ Termyeg(f) + Termdata(f)})

fee2(V)

’ Regularization Term ‘

Directed: Undirected: DSP-G:
(F, L) (f,Lf) |f — Anormf||?
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0.9

0.85

Taux d'estimation

0.8

Cel

Filtering GSP on Digraph Learning on digraphs
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H
Example of SSL on the blog’s data
Vi
4 4
—-— (L, f) (Sevietcoll)
~ © - (fLf) (Cas symétrique) | |
1A e I
I I I I I I I
0.02 0.04 0.06 0.08 0.4 0.12 0.14 0.16

Taux d'étiquettes connues
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Parametric modelling

Problem formulation
e Model a graph signal f, e.g., for compression or inpainting
e Assumption: a partial observation y of f

Objective
o Estimate a parametric modeling of f
¢ Recover the missing data points from y
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Solution of the problem

We observe y = «f, where the ¢, = 1 if known, else 0
Decide upon a reference operator, noted R, first R =P or A
Model the signal thanks to a parametric graph filter H:

K
H(6) =) 6R", 6 eR.
Parameter estimation

K
6= argmin E {Hf — ZlgkRk.V”i} )

0={0,}K_ erK+1 k=0

(that has well-known solution)
Signal model :
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Experimental results (1)

1.05 : ‘
- © — P (Sevietcoll)
-e-A
r T 4
B S R R )

S 095 - _-- |
£ e
o -
2 [
[%]
Sost | | 1 _____ |
3 - - -
4] 1 o b----G--
(] _e--""
° br
x08 - T |
©
i

08 1 4

0.75 : ! ! L ! | |

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Taux d'étiquettes connues

p. 28
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Alternative Reference Operator (1)

Other Reference operators R could be used :

o P*, associated to the time reversed random walk: P* = II"'P " II.

o P, the additive reversibilization of P: P = P +2P :

Prop.: P, P*, P lead all to DiGFT with frequency related to Variations
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0.98

Taux de reconstruction
o o o o o o
© © © ©w © o
g 8 ® 8 8 9

o
@

o
©

Taux d'étiquettes connues

Filtering GSP on Digraph Learning on digraphs
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Experimental results (2)
T
T -e-P
o =+= - ©-05P+P") |
T -e-P
I =7 |
SO S RN SUSSS RS 3
L / . 4
11 I
11 -
L e - -
11 e
L
I 17 .
1’
’
T Il Il Il Il Il Il
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
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Alternative Reference Operator (2)

o P*, associated to the time reversed random walk: P* = II"'P " I1.

o P, the additive reversibilization of P: P = P J;P )

Generalization: convex combination between P and P*

P.=(1—a)P+aP”
fora € [0, 1].

Prop.: P, leads all to DiGFT with frequency related to Variations
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Experimental results (3)
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Designing Convex Combination of Graph Filters
joint work with F. Hua, J. Chen, H. Wang, P. Gongalves, C. Richard

e The convex combination of operators does not lead to convex
optimization problem:

e Letus consider S = oSy + (1 — @)Sy
o Afilter H = >5-1 h,S*
e Observations of input x & output y of this filter:

y = Hx
e The estimation of h and « by minimising the cost:
L1 2
J(h,a) = ||y = 3" he(aSy + (1 - a)Sz)'x
£=0

is non convex w.r.t. h and a!
e This would still not be the case by adding two filters:

°
2

J'(h,a) =

L—1 L1
Y= [ hSH+(1—a)d  h,Shlx
=0 =0
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Designing Convex Combination of Graph Filters
joint work with F. Hua, J. Chen, H. Wang, P. Gongalves, C. Richard

e Solution: use the approach of [“Simple MKL’, Rakotomamonjy et al.,

JLMR 2008]
e The combination is now of different filters:
L1
H="> hi/Si+ h,S;
£=0

e The combination is now regularised and controlled by minimizing a
balance between the norms of the vectors of filter coefficients:

1 (] bl 1 &
1 RS, a* = argmin 2(” 1l +7|| ll >+Zei

h],hg,a « 1 — 2’[1, ot
subject to :
e =yr—h{mix—hymaoy, ke{l,....N}
O<ax<l,

where m{ is the k-th row of the matrix M , itself is obtained by
concatenation as [Mi].,, = S{~'x; idem for mj
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Designing Convex Combination of Graph Filters
joint work with F. Hua, J. Chen, H. Wang, P. Gongalves, C. Richard

e The problem is now an optimization problem that is jointly convex w.r.t.
h1, h2 and «

e Solution obtained with a two-step procedure, w.r.t. hy, h, and then «

Algorithm 1

Input: ,y.S,,8S2, L.

Initialize: randomly choose 0 < a*; < 1, compute M, M.
Repeat:

1: solve (22) with a generic QP solver to get A™
compute hj, hj from (21),
2: update o by using (25).
Until: stopping condition is satisfied.
Output: h, h}, o*.

1
A" =arg max —A (R + DA+ ATy
AeRN 2

(22)
with R, = aM M/ + (1 — a)MoM, .
R =Yl Nmu -1
= ’ 1—aj; [NTM,MJX
hy =(1—a)XN  Amay - @D o =1+ LY Sl it S 25
2 ( ) D km1 AR,k 4 o, NTM M A (25)

e = HAL
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Designing Convex Combination of Graph Filters
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Application: Signal recovery on the political blogs

e Combined operators: S = P and Sy = P*
e Accuracy result:

Reconstuction accuracy

0000000000000

1 T
0978 = = =4
0.1 0.12 0.14
777777 -9
R S R R
0955 — — J
- %’ o % % %
09T — 3 —model (4) with § = Wyy | 7
— & —model (4) with § =P
— & —model (8)
— & —model (9)
— é — proposed
0.85 . . . . . .
0.02 0.04 0.06 0.08 0.1 0.12 0.14

Proportion of known labels

0.16

Cel
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Perspectives for GSP on directed graphs

A full framework to generalize Laplacian-based approaches to digraphs,

- using random walk (or generalisations P, ) as Reference operator
- and Ly to measure variations and define frequency

Re-interpretation of SSL ; Improvement of parametric modelling

More developments:

Spectral wavelets and diffusion wavelets with P on digraphs
see [H. Sevi, G. Rilling, P.B., arXiv:1811.11636]

Recent interests in combining that and more machine learning
cf. ACADEMICS project (SB IDEXLYON)

Contact and more information:

http://perso.ens-lyon.fr/pierre.borgnat
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On the directed cyclic graph

—-O

Classic DSP Directed cycle graph
Eigenvectors giwt g=iwt = !, ot
Eigenvalues e, e~ = 0,0
Frequencies w, —w # 0,0=(1—-w)xip
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On a directed torus graph

Directed torus graph

Cel

~— G == =@ == @l - =G - == Q- -
.
--0---E--0l---0---8~-~-

Eigenvalues of P.
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We show 2 eigenmodes of same frequency and different (non conjugate)

Filtering GSP on Digraph
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On a directed torus graph

imaginary parts

Re¢,
'“ 0.02
0.01
c
8
© 0
<4
5
> -0.01
o o0z
x-direction
Im¢,
0.02
0.01
c
8
© 0
2
5
> -0.01
-0.02

x-direction

y-direction

-

y-direction

x-direction

Im¢,

—

x-direction

Cel




Further numerical explorations of graph signal modelling

Results depends on the sampling law for € (where t = f)

A limit of choosing P: it requires a strongly connected graph...
1) use connected components,
or 2) modify the graph

e add a small rank-one perturbation (Cons: non-sparse)
e construct the “google” matrix:
complete dangling nodes (i.e., nodes with d°!! = 0)
and then add a probability of jumping anywhere
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Experimental results (4)

Graph signal reconstruction G
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