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CONTEXT AND MOTIVATION




LEARNING ON CONNECTED DEVICES DATA

- Connected devices are widespread and collect increasingly
personal data

- Ex: browsing logs, health, speech, accelerometer, geolocation
- Great opportunity to provide personalized services

- Two classic strategies:

- Centralize data from all devices: limited user control, privacy and
security issues, communication/infrastructure costs
- Learn on each device separately: poor utility for many users

- Goal: find a sweet spot between these two extremes



RELATED WORK: FEDERATED LEARNING

- Coordinator-clients architecture [McMahan et al., 2017]

- Iterates over the following (synchronous) steps:
- Clients send model updates computed on local data
- Coordinator aggregates and sends the new model back to clients

- Heavy dependence on coordinator: scalability issues with large
number of clients number of clients

- Existing approaches learn a single consensus model for all users 4



RELATED WORK: FULLY DECENTRALIZED LEARNING

communications
as in classic federated learning

to many devices through local exchanges
(see e.g, [Lian et al, 2017])

- Again, existing approaches learn a



OUR APPROACH: DESIRED PROPERTIES

1. Keep data on the device of the users
2. Learn personalized models in collaborative fashion
3. Learn and leverage a graph of similarities between users

4. Decentralized algorithms to scale to large number of devices

And also (not in this talk):
5. Formal privacy guarantees [Bellet et al,, 2018]

6. Low-communication via L1-boosting [Zantedeschi et al,, 2019]



PROBLEM SETTING




PROBLEM SETTING: AGENTS AND LOCAL DATASETS

- We have aset V= [n] = {1,...,n} of n learning agents (users)
- Data point (x,y) € X x Y where x is the features and y the label
- Model parameters 6 € RP, loss function /: RP x X x Y — R

- Agent i has dataset §; = {(x’,:,)/,:)};”:'1 of size m; > 0 drawn from its
personal distribution

- Inisolation, agent i can learn a purely local model by ERM

0i° € argmin L;(6; S;) ZEHX} Y + Ail6]1%, with A; > 0
6eRP

- Goal: improve upon é)}OC with the help of other agents



PROBLEM SETTING: COLLABORATION GRAPH

- Collaboration graph: undirected, weighted graph over the agents

- (Sparse) nonnegative graph weights w IR{”Z(Q_WZ represent

pairwise similarities between agents’ objectives

- We can think of the collaboration graph as an overlay over the
physical communication network (which is complete graph)



OUR JOINT OPTIMIZATION PROBLEM

- Learn personalized models © € R"*P and graph weights
w e RY (=172 35 solutions to [Zantedeschi et al, 2019]:

@mRJIlp ch,c 0 S) + Zw,,ne 8i[|> + Ag(w),
Weﬂgr;(g—n/z i<j

€ (0,1] o« m;: confidence of agent J, d; = Z#i wj;: degree of i

- Trade-off between having accurate models on local dataset and
smoothing models along the graph

- Term g(w): avoid trivial graphs, encourage desirable properties

- Note that p interpolates between learning purely local models
and learning consensus models among connected components



OUTLINE OF THE PROPOSED APPROACH

- Problem not jointly convex in © and w, but is typically bi-convex
- Natural approach: alternating optimization over © and w

- | will first present a decentralized algorithm to learn the models
given the graph (communication along edges of the graph)

- Then, | will present a decentralized algorithm to learn a (sparse)
graph given the models (communication through peer sampling)
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LEARNING MODELS GIVEN THE GRAPH




DECENTRALIZED ALGORITHM

- Asynchronous time model: each agent has a local Poisson clock
and wakes up when it ticks [Boyd et al., 2006]

- Equivalently: single clock (with counter t, unknown to the
agents) ticking when one of the local clocks ticks

- Each agent i will only need a local view of the current graph: its
neighborhood N; = {j # i : w; > 0} and the associated weights

- 1-hop communication model: the agent who wakes up
exchanges messages with its direct neighbors

- Note: we also have gossip algorithms [Vanhaesebrouck et al., 2017]



PROPERTIES OF OBJECTIVE FUNCTION

- For fixed graph weights, denote f(©) := f(©, w)

- Assume local loss £; has L°¢-Lipschitz continuous gradient

- Then Vef is Li-Lipschitz w.rt. block ©; with L; = dj(u + ¢;L1¢)

- Can also assume that £; is a}oc—strongw convex where a}"c >0

- Then fis o-strongly convex with o > mini<j<,[dicioi°] > 0

14



DECENTRALIZED ALGORITHM

- Initialize models ©;(0) € R"*P
- At step t > 0, a random agent i wakes up:

1. Agent i updates its model based on information from neighbors:

O/(t+1) = 8(t) - ——= (aVL(O(1: S) ~ 1 Y FO,(0)

= ? T CfoOC pry’
2. Agentisends its updated model ©;(t 4 1) to its neighborhood N,

- The update is a trade-off between a local gradient step and a
weighted average of neighbors’ models



CONVERGENCE RATE

Proposition ([Bellet et al., 2018])

Forany T > 0, let (©(t))]_, be the sequence of iterates generated
by the algorithm running for T iterations from an initial point ©(0).
When fis o-strongly convex in ©, we have:

>k 0- T
Ef0M) 1< (1-7r—) (1e) ),
where Lmax = max; L;.
- Essentially follows from analysis [Wright, 2015]

- Can obtain convergence in O(1/T) in convex case

- Can extend analysis to the case where random noise is added to
ensure differential privacy [Bellet et al., 2018]



LEARNING THE GRAPH GIVEN MODELS




JOINT LEARNING OF MODELS AND COLLABORATION GRAPH

- Recall our joint problem

_min_ f( ch, (65 5)+ 5 D" willds = I + Ag(w),
W€§m /2 i<

- Inspired from [Kalofolias, 2016], we set A = p and define
g(w) = B|w||*> — 1" log(d + ) (with & small constant)
- Log barrier on the degree vector d to avoid isolated agents and
L, penalty on weights to control the graph sparsity

- Tends to favor large weights to agents with similar models,
unless their confidence-weighted loss is large

- Problem is strongly convex in w



DECENTRALIZED ALGORITHM

- We want to find new graph weights w given models ©

- We thus need agents to communicate beyond their neighbors in
the current collaboration graph

- We rely on peer sampling, a classic distributed systems primitive
allowing an agent to communicate with a random set of peers

- Can be implemented in a fully decentralized setting without
nodes storing all IP addresses [Jelasity et al., 2007]
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DECENTRALIZED ALGORITHM

- Initialize weights w(0), set parameter x € {1,..., n—1}

- At each step t > 0, a random agent | wakes up:

1. Draw a set K of x agents and request their model, loss and degree
2. Update the associated weights w(t +1); . = (W(t + 1);)jex € R™

Wit + 1), max (0,10, — - [VAW(O)]x)

where L, = ZH(% + B) is the block Lipschitz constant of Vf(w)
3. Send each updated weight w(t + 1), , to the associated agent [ € K

- Can be shown to be an instance of proximal coordinate descent
with an overlapping block structure

- Can be generalized to any weight/degree-separable g(w)
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CONVERGENCE RATE

Theorem ([Zantedeschi et al., 2019])

Forany T > 0, let (w(t))]_, be the sequence of iterates generated by
the algorithm running for T iterations from an initial point w(0). We
have E[f(w() — f*] < pT(Aw(®) — f*) where p is given by

2 KB6°
n(n—1)k+14 B4

p="1-

- k can be used to trade-off between and

- Communication cost per iteration is linear in &, but the impact
on p fades quickly (due to worst-case dependence of L, in &)

-k =1 minimizes total communication cost if moderate precision
is sufficient, while larger values reduce number of rounds
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NUMERICAL EXPERIMENTS




EXPERIMENTS: COLLABORATIVE LINEAR CLASSIFICATION

- We consider a set of n =100 agents and a synthetic linear
classification task in RP (we use the hinge loss)

- Each agent is associated with an (unknown) target linear model

- Each agent i receives a random number m; of samples with label
given by the prediction of target model (plus noise)

- We can build a “ground-truth” collaboration graph based on the
angle between target models (note: this is cheating!)
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EXPERIMENTS: COLLABORATIVE LINEAR CLASSIFICATION

- Results when using the ground-truth graph
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EXPERIMENTS: COLLABORATIVE LINEAR CLASSIFICATION

- All agents benefit, but those with small local datasets get a
stronger boost
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EXPERIMENTS: COLLABORATIVE LINEAR CLASSIFICATION

- We show that the learned topology adapts to the problem,
unlike classic heuristics (e.g., R-NN graph)

- Below we approximately recover the cluster structure, and
prediction accuracy is close to that of ground-truth graph

G
©=0)
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EXPERIMENTS: ACTIVITY RECOGNITION ON SMARTPHONES

- Use a public dataset with n = 30 agents

- Simple classification problem: walking upstairs vs downstairs

- Linear models, and nonlinear ensembles [Zantedeschi et al., 2019]
- 3-12 training points per agent, 561 features derived from sensors

- No agent similarity information available

T
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FUTURE WORK




SOME FUTURE WORK

- Extend analysis to nonconvex setting (deep neural nets)

- Use the graph to smooth predictions rather than model
parameters

- Learn graph weights as statistical estimates of some distance
between data distributions

- Dynamic setting: data arrives sequentially, agents join/leave

- Robustness to malicious parties [Dellenbach et al, 2018]

29
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PRIVACY ISSUES WHEN LEARNING THE MODELS

- In some applications, data may be sensitive and agents may not
want to reveal it to anyone else

- In the previous algorithm, agents never communicate their local
data but exchange sequences of models computed from data

- Consider an adversary observing all the information sent over
the network (but not the internal memory of agents)

- Goal: formally guarantee that no/little information about the
local dataset is leaked by the algorithm
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DIFFERENTIAL PRIVACY

(¢, )-Differential Privacy [Dwork, 2006]

Let M be a randomized mechanism taking a dataset as input, and
lete > 0,6 > 0. We say that M is if for
all datasets S, S’ differing in a single data point and for all sets of
possible outputs O C range(M), we have:

Pr(M(S) € O) < ePr(M(S’') € O) +6.
- Guarantees that the output of M is almost the same regardless
of whether a particular data point was used

- Robust to that adversary may have
- Information-theoretic (no computational assumptions)

: the combined output of two (¢, d)-DP
mechanisms (run on the same dataset) is (2¢,25)-DP
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DIFFERENTIALLY PRIVATE ALGORITHM

1. Replace the update of the algorithm by

((VE(@ Si)+mi) “Z U@ ),

8(t+1) = &1(t)-——(c
() =80 — >

where n; ~ Laplace(0, s;)P € RP
2. Agent i then broadcasts noisy iterate (:),(t + 1) to its neighbors

36



PRIVACY GUARANTEE

- In our setting, the output of our algorithm is the sequence of
agents’ models sent over the network

Theorem ([Bellet et al., 2018])

Assume agent i wakes up T; times and use noise scale

Then for any initial point é(O) independent of S;, the algorithm is
(€,0)-DP with
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PRIVACY/UTILITY TRADE-OFF

Theorem ([Bellet et al., 2018])

Forany T > 0, let (©(t))[_, be the sequence of iterates generated by
T iterations. We have:

+ (g o @es)’) (1=#1)

1@ i=1

- Second term gives additive error due to noise

: the less data, the more noise added by the agent,
but the least influence in the network

- Trules a trade-off between optimization error and noise error
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