
decentralized collaborative learning of personalized
models and collaboration graph

Aurélien Bellet (Inria MAGNET)
Joint work with:
M. Tommasi, P. Vanhaesebrouck (Inria, Univ. Lille)
R. Guerraoui, M. Taziki (EPFL)
V. Zantedeschi (Univ. St-Etienne)

Workshop “Graph signals: learning and optimization perspectives”
Montpellier — May 2, 2019

context and motivation

learning on connected devices data

• Connected devices are widespread and collect increasingly
personal data

• Ex: browsing logs, health, speech, accelerometer, geolocation

• Great opportunity to provide personalized services

• Two classic strategies:
• Centralize data from all devices: limited user control, privacy and
security issues, communication/infrastructure costs

• Learn on each device separately: poor utility for many users

• Goal: find a sweet spot between these two extremes

3

related work: federated learning

• Coordinator-clients architecture [McMahan et al., 2017]
• Iterates over the following (synchronous) steps:

• Clients send model updates computed on local data
• Coordinator aggregates and sends the new model back to clients

• Heavy dependence on coordinator: scalability issues with large
number of clients number of clients

• Existing approaches learn a single consensus model for all users 4

related work: fully decentralized learning

• Peer-to-peer and asynchronous communications

• No single point of failure as in classic federated learning

• Scalability-by-design to many devices through local exchanges
(see e.g., [Lian et al., 2017])

• Again, existing approaches learn a single consensus model

5

our approach: desired properties

1. Keep data on the device of the users

2. Learn personalized models in collaborative fashion

3. Learn and leverage a graph of similarities between users

4. Decentralized algorithms to scale to large number of devices

And also (not in this talk):

5. Formal privacy guarantees [Bellet et al., 2018]

6. Low-communication via L1-boosting [Zantedeschi et al., 2019]

6

problem setting

problem setting: agents and local datasets

• We have a set V = JnK = {1, . . . ,n} of n learning agents (users)

• Data point (x, y) ∈ X × Y where x is the features and y the label

• Model parameters θ ∈ Rp, loss function ℓ : Rp ×X × Y → R

• Agent i has dataset Si = {(xji, y
j
i)}

mi
j=1 of size mi ≥ 0 drawn from its

personal distribution

• In isolation, agent i can learn a purely local model by ERM

θloci ∈ argmin
θ∈Rp

Li(θ;Si) =
1
mi

mi∑
j=1

ℓ(θ; xji, y
j
i) + λi∥θ∥2, with λi ≥ 0

• Goal: improve upon θloci with the help of other agents

8

problem setting: collaboration graph

• Collaboration graph: undirected, weighted graph over the agents

• (Sparse) nonnegative graph weights w ∈ Rn(n−1)/2
≥0 represent

pairwise similarities between agents’ objectives

• We can think of the collaboration graph as an overlay over the
physical communication network (which is complete graph)

9

our joint optimization problem

• Learn personalized models Θ ∈ Rn×p and graph weights
w ∈ Rn(n−1)/2

≥0 as solutions to [Zantedeschi et al., 2019]:

min
Θ∈Rn×p

w∈Rn(n−1)/2
≥0

f(Θ,w) =
n∑
i=1

diciLi(θi;Si) +
µ

2
∑
i<j

wij∥θi − θj∥2 + λg(w),

• ci ∈ (0, 1] ∝ mi: confidence of agent i, di =
∑

j̸=i wij: degree of i

• Trade-off between having accurate models on local dataset and
smoothing models along the graph

• Term g(w): avoid trivial graphs, encourage desirable properties

• Note that µ interpolates between learning purely local models
and learning consensus models among connected components

10

outline of the proposed approach

• Problem not jointly convex in Θ and w, but is typically bi-convex

• Natural approach: alternating optimization over Θ and w

• I will first present a decentralized algorithm to learn the models
given the graph (communication along edges of the graph)

• Then, I will present a decentralized algorithm to learn a (sparse)
graph given the models (communication through peer sampling)

11

learning models given the graph

decentralized algorithm

• Asynchronous time model: each agent has a local Poisson clock
and wakes up when it ticks [Boyd et al., 2006]

• Equivalently: single clock (with counter t, unknown to the
agents) ticking when one of the local clocks ticks

• Each agent i will only need a local view of the current graph: its
neighborhood Ni = {j ̸= i : wij > 0} and the associated weights

• 1-hop communication model: the agent who wakes up
exchanges messages with its direct neighbors

• Note: we also have gossip algorithms [Vanhaesebrouck et al., 2017]

13

properties of objective function

• For fixed graph weights, denote f(Θ) := f(Θ,w)

• Assume local loss Li has Lloci -Lipschitz continuous gradient

• Then ∇Θf is Li-Lipschitz w.r.t. block Θi with Li = di(µ+ ciLloci)

• Can also assume that Li is σloci -strongly convex where σloci > 0

• Then f is σ-strongly convex with σ ≥ min1≤i≤n[diciσloci] > 0

14

decentralized algorithm

• Initialize models Θi(0) ∈ Rn×p

• At step t ≥ 0, a random agent i wakes up:
1. Agent i updates its model based on information from neighbors:

Θi(t+ 1) = Θi(t)−
1

µ+ ciLloci

(
ci∇Li(Θi(t);Si)− µ

∑
j∈Ni

wij
di

Θj(t)
)

2. Agent i sends its updated model Θi(t+ 1) to its neighborhood Ni

• The update is a trade-off between a local gradient step and a
weighted average of neighbors’ models

15

convergence rate

Proposition ([Bellet et al., 2018])

For any T > 0, let (Θ(t))Tt=1 be the sequence of iterates generated
by the algorithm running for T iterations from an initial point Θ(0).
When f is σ-strongly convex in Θ, we have:

E [f(Θ(T))− f⋆] ≤
(
1− σ

nLmax

)T
(f(Θ(0))− f∗) ,

where Lmax = maxi Li.

• Essentially follows from coordinate descent analysis [Wright, 2015]
• Can obtain convergence in O(1/T) in convex case
• Can extend analysis to the case where random noise is added to
ensure differential privacy [Bellet et al., 2018]

16

learning the graph given models

joint learning of models and collaboration graph

• Recall our joint problem:

min
Θ∈Rn×p

w∈Rn(n−1)/2
≥0

f(Θ,w) =
n∑
i=1

diciLi(θi;Si) +
µ

2
∑
i<j

wij∥θi − θj∥2 + λg(w),

• Inspired from [Kalofolias, 2016], we set λ = µ and define

g(w) = β∥w∥2 − 1T log(d+ δ) (with δ small constant)

• Log barrier on the degree vector d to avoid isolated agents and
L2 penalty on weights to control the graph sparsity

• Tends to favor large weights to agents with similar models,
unless their confidence-weighted loss is large

• Problem is strongly convex in w

18

decentralized algorithm

• We want to find new graph weights w given models Θ

• We thus need agents to communicate beyond their neighbors in
the current collaboration graph

• We rely on peer sampling, a classic distributed systems primitive
allowing an agent to communicate with a random set of peers

• Can be implemented in a fully decentralized setting without
nodes storing all IP addresses [Jelasity et al., 2007]

19

decentralized algorithm

• Initialize weights w(0), set parameter κ ∈ {1, . . . ,n− 1}

• At each step t ≥ 0, a random agent i wakes up:
1. Draw a set K of κ agents and request their model, loss and degree
2. Update the associated weights w(t+ 1)i,K = (w(t+ 1)ij)j∈K ∈ Rκ:

w(t+ 1)i,K ← max
(
0,w(t)i,K −

1
Lκ

[∇f(w(t))]i,K
)

where Lκ = 2µ(κ+1
δ2 + β) is the block Lipschitz constant of ∇f(w)

3. Send each updated weight w(t+ 1)k,l to the associated agent l ∈ K

• Can be shown to be an instance of proximal coordinate descent
with an overlapping block structure

• Can be generalized to any weight/degree-separable g(w)

20

convergence rate

Theorem ([Zantedeschi et al., 2019])

For any T > 0, let (w(t))Tt=1 be the sequence of iterates generated by
the algorithm running for T iterations from an initial point w(0). We
have E[f(w(T))− f∗] ≤ ρT(f(w(0))− f∗) where ρ is given by

ρ = 1− 2
n(n− 1)

κβδ2

κ+ 1+ βδ2

• κ can be used to trade-off between communication cost and
convergence speed

• Communication cost per iteration is linear in κ, but the impact
on ρ fades quickly (due to worst-case dependence of Lκ in κ)

• κ = 1 minimizes total communication cost if moderate precision
is sufficient, while larger values reduce number of rounds

21

numerical experiments

experiments: collaborative linear classification

• We consider a set of n = 100 agents and a synthetic linear
classification task in Rp (we use the hinge loss)

• Each agent is associated with an (unknown) target linear model

• Each agent i receives a random number mi of samples with label
given by the prediction of target model (plus noise)

• We can build a “ground-truth” collaboration graph based on the
angle between target models (note: this is cheating!)

23

experiments: collaborative linear classification

• Results when using the ground-truth graph

20 40 60 80 100
Dimension p

0.50 0.50

0.55 0.55

0.60 0.60

0.65 0.65

0.70 0.70

0.75 0.75

0.80 0.80

0.85 0.85

0.90 0.90

0.95 0.95
Te

st
 a

cc
ur

ac
y

Purely local models
Non-private CD
Private CD (= 1.05)
Private CD (= 0.55)
Private CD (= 0.15)

24

experiments: collaborative linear classification

• All agents benefit, but those with small local datasets get a
stronger boost

10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Size of local dataset

0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

Te
st

 a
cc

ur
ac

y

Local models
Private CD (= 0.15)
Private CD (= 0.55)
Private CD (= 1.05)
Non-private CD

25

experiments: collaborative linear classification

• We show that the learned topology adapts to the problem,
unlike classic heuristics (e.g., k-NN graph)

• Below we approximately recover the cluster structure, and
prediction accuracy is close to that of ground-truth graph

0 20 40 60 80

0

20

40

60

80

0

4

8

12

16

20

24

28

32

54

47

43

43

34

53

65

39

42

46

125

129

139

136

152

137

125
125

146

148

153

130

149

132

141

136
144

129

147
141

315

301

327 332

335

320

310

291

325

335

329

314

309

323

318

284

313

309
324

314

308

308

313

288

318

298

321

284
323

318
232

213

230

230 226
237

214

223

203

242
236

234

231

221

222

242
238

228

226

260

217

208

226

223

225
219 210

214

219

228

236

212

210

229

217

246

226
225

223 225

26

experiments: activity recognition on smartphones

• Use a public dataset with n = 30 agents

• Simple classification problem: walking upstairs vs downstairs

• Linear models, and nonlinear ensembles [Zantedeschi et al., 2019]

• 3-12 training points per agent, 561 features derived from sensors

• No agent similarity information available

0 200 400 600 800 1000

nb iterations

0.6

0.7

0.8

0.9

1.0

te
st

 a
cc

u
ra

cy

Perso-linear-Learned

Local-nonlinear

Global-nonlinear

Perso-nonlinear-Learned

27

future work

some future work

• Extend analysis to nonconvex setting (deep neural nets)

• Use the graph to smooth predictions rather than model
parameters

• Learn graph weights as statistical estimates of some distance
between data distributions

• Dynamic setting: data arrives sequentially, agents join/leave

• Robustness to malicious parties [Dellenbach et al., 2018]

29

Thank you for your attention!
Questions?

30

references I

[Bellet et al., 2018] Bellet, A., Guerraoui, R., Taziki, M., and Tommasi, M. (2018).
Personalized and Private Peer-to-Peer Machine Learning.
In AISTATS.

[Boyd et al., 2006] Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. (2006).
Randomized gossip algorithms.
IEEE/ACM Transactions on Networking (TON), 14(SI):2508–2530.

[Dellenbach et al., 2018] Dellenbach, P., Bellet, A., and Ramon, J. (2018).
Hiding in the Crowd: A Massively Distributed Algorithm for Private Averaging with Malicious
Adversaries.
Technical report, arXiv:1803.09984.

[Dwork, 2006] Dwork, C. (2006).
Differential Privacy.
In ICALP.

[Jelasity et al., 2007] Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., and van Steen, M.
(2007).
Gossip-based peer sampling.
ACM Trans. Comput. Syst., 25(3).

31

references II

[Kalofolias, 2016] Kalofolias, V. (2016).
How to learn a graph from smooth signals.
In AISTATS.

[Lian et al., 2017] Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. (2017).
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for
Decentralized Parallel Stochastic Gradient Descent.
In NIPS.

[McMahan et al., 2017] McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and Agüera y Arcas, B.
(2017).
Communication-efficient learning of deep networks from decentralized data.
In AISTATS.

[Vanhaesebrouck et al., 2017] Vanhaesebrouck, P., Bellet, A., and Tommasi, M. (2017).
Decentralized Collaborative Learning of Personalized Models over Networks.
In AISTATS.

[Wright, 2015] Wright, S. J. (2015).
Coordinate descent algorithms.
Mathematical Programming, 151(1):3–34.

32

references III

[Zantedeschi et al., 2019] Zantedeschi, V., Bellet, A., and Tommasi, M. (2019).
Communication-efficient and decentralized multi-task boosting while learning the
collaboration graph.
Technical report, arXiv:1901.08460.

33

privacy issues when learning the models

• In some applications, data may be sensitive and agents may not
want to reveal it to anyone else

• In the previous algorithm, agents never communicate their local
data but exchange sequences of models computed from data

• Consider an adversary observing all the information sent over
the network (but not the internal memory of agents)

• Goal: formally guarantee that no/little information about the
local dataset is leaked by the algorithm

34

differential privacy

(ϵ, δ)-Differential Privacy [Dwork, 2006]
Let M be a randomized mechanism taking a dataset as input, and
let ϵ > 0, δ ≥ 0. We say that M is (ϵ, δ)-differentially private if for
all datasets S,S ′ differing in a single data point and for all sets of
possible outputs O ⊆ range(M), we have:

Pr(M(S) ∈ O) ≤ eϵPr(M(S ′) ∈ O) + δ.

• Guarantees that the output ofM is almost the same regardless
of whether a particular data point was used

• Robust to background knowledge that adversary may have

• Information-theoretic (no computational assumptions)

• Composition property: the combined output of two (ϵ, δ)-DP
mechanisms (run on the same dataset) is (2ϵ, 2δ)-DP

35

differentially private algorithm

1. Replace the update of the algorithm by

Θ̃i(t+1) = Θ̃i(t)−
1

µ+ ciLloci

(
ci(∇Li(Θ̃i(t);Si)+ηi)−µ

∑
j∈Ni

wij
di

Θ̃j(t)
)
,

where ηi ∼ Laplace(0, si)p ∈ Rp

2. Agent i then broadcasts noisy iterate Θ̃i(t+ 1) to its neighbors

36

privacy guarantee

• In our setting, the output of our algorithm is the sequence of
agents’ models sent over the network

Theorem ([Bellet et al., 2018])

Assume agent i wakes up Ti times and use noise scale si = L0
ϵimi

.
Then for any initial point Θ̃(0) independent of Si, the algorithm is
(ϵ̄i, 0)-DP with ϵ̄i = Tiϵi.

37

privacy/utility trade-off

Theorem ([Bellet et al., 2018])

For any T > 0, let (Θ̃(t))Tt=1 be the sequence of iterates generated by
T iterations. We have:

E
[
(Θ̃(T))−⋆

]
≤ ρT

(
(Θ̃(0))−⋆

)
+
(1
(1− ρ)Cn

n∑
i=1

(
dicisi

)2)(1− ρT
)

• Second term gives additive error due to noise

• Sweet spot: the less data, the more noise added by the agent,
but the least influence in the network

• T rules a trade-off between optimization error and noise error

38

	Context and motivation
	Problem setting
	Learning models given the graph
	Learning the graph given models
	Numerical experiments
	Future work

